Categoria: Decomposição de figuras – Teorema de Pitágoras

0

Ficha de Trabalho

8.º Ano: Decomposição de Figuras - Teorema de Pitágoras, Funções, Sequências de números, Máximo divisor comum e mínimo múltiplo comum de dois ou mais números, Potências de expoente inteiro, Notação científica e Semelhança de triângulos

A presente Ficha de Trabalho aborda os temas: Decomposição de Figuras – Teorema de Pitágoras, Funções, Sequências de números, Máximo divisor comum e mínimo múltiplo comum de dois ou mais números, Potências de expoente inteiro, Notação científica e Semelhança de triângulos.

As dificuldades que encontres durante a sua resolução deves tentar superá-las consultando o manual e o caderno diário; depois, poderás tirar as dúvidas na aula ou na sala de estudo.…

0

Ficha de Trabalho

8.º Ano - Decomposição de Figuras - Teorema de Pitágoras e Funções

A presente Ficha de Trabalho aborda os temas: Decomposição de Figuras – Teorema de Pitágoras e Funções.

As dificuldades que encontres durante a sua resolução deves tentar superá-las consultando o manual e o caderno diário; depois, poderás tirar as dúvidas na aula ou na sala de estudo.

O acesso à proposta de resolução precisa de uma senha.…

0

Um copo

Decomposição de figuras - Teorema de Pitágoras: Matematicamente Falando 8 - Parte 1 Pág. 39 Ex. 6

Enunciado

Um copo tem interiormente a forma de um cone de revolução.

Tendo em conta as indicações da figura, calcula:

  1. a altura do copo;
     
  2. um valor aproximado às unidades da capacidade do copo.

Resolução >> Resolução

  1. Aplicando o teorema de Pitágoras, determinemos a altura do cone:

    $$\begin{array}{*{35}{l}}
       {{h}^{2}}={{10}^{2}}-{{6}^{2}} & \Leftrightarrow  & {{h}^{2}}=100-36  \\
       {} & \Leftrightarrow  & {{h}^{2}}=64  \\
       {} & Logo, & h=8  \\
    \end{array}$$

    Portanto, o copo tem 18 cm de altura ($8+10$).

0

Um cone de revolução

Decomposição de figuras - Teorema de Pitágoras: Matematicamente Falando 8 - Parte 1 Pág. 39 Ex. 5

Enunciado

Um cone de revolução com 8 dm de altura tem por base um círculo com 6 dm de raio.

Quanto mede a sua geratriz?

Resolução >> Resolução

Aplicando o teorema de Pitágoras, temos:

$\begin{array}{*{35}{l}}
   {{g}^{2}}={{6}^{2}}+{{8}^{2}} & \Leftrightarrow  & {{g}^{2}}=36+64  \\
   {} & \Leftrightarrow  & {{g}^{2}}=100  \\
   {} & Logo, & g=10  \\
\end{array}$

 

 A geratriz do cone tem 10 dm de comprimento.…

0

Um prisma

Decomposição de figuras - Teorema de Pitágoras: Matematicamente Falando 8 - Parte 1 Pág. 39 Ex. 4

Enunciado

Observa o prisma representado na figura:

  1. Indica, usando as letras da figura:
    – duas rectas paralelas;
    – dois planos perpendiculares;
    –  uma recta e um plano perpendiculares;
    – dois planos paralelos;
    – uma recta paralela a um plano.
     
  2. Calcula o volume do prisma.
     
  3. Determina um valor aproximado às unidades da área total do prisma.
0

Cortou-se um cubo

Decomposição de figuras - Teorema de Pitágoras: Matematicamente Falando 8 - Parte 1 Pág. 39 Ex. 3

Enunciado

Cortou-se um cubo por um plano contendo as diagonais de duas faces paralelas.

  1. Que forma tem a secção obtida?
     
  2. Sabendo que o cubo tem 4 cm de aresta, relaciona a área da secção com a área de uma face.

Resolução >> Resolução

  1. A secção obtida tem a forma de um rectângulo.
0

O quarto do Fernando

Decomposição de figuras - Teorema de Pitágoras: Matematicamente Falando 8 - Parte 1 Pág. 39 Ex. 2

Enunciado

O quarto do Fernando tem 2,45 m de altura.

Ele comprou um armário cujas medidas, em metros, estão indicadas na figura.

Ele conseguirá colocar o armário em pé sem ser preciso desmontá-lo?

Dica >> Dica

Desloca o ponto P para colocar o armário em pé.

var parameters = { "id": "ggbApplet", "width":429, "height":335, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 73 , 14 68 | 25 52 60 61 | 40 41 42 , 27 28 35 , 6", "showToolBarHelp":false, "showResetIcon":true, "enableLabelDrags":false, "enableShiftDragZoom":false, "enableRightClick":false, "errorDialogsActive":false, "useBrowserForJS":false, "preventFocus":false, "language":"pt", // use this instead of ggbBase64 to load a material from GeoGebraTube // "material_id":12345, "ggbBase64":"UEsDBBQACAgIAJyFH0cAAAAAAAAAAAAAAAAtAAAAZWQ0MGMwMDk5ZDJjNTczNWM4MWQ5YmJmNzg3YmYyNjlccGFnLTM5LTIuanBnnLlnWJNNFC2aECCACIiiiSQUE4w0JWBJgFCVIkpvCipVFAFTqEG6gCWEJggaAkhHQUA60kQJTYKCdAQMGHrv9fid55Q/98e9d78/Z573mTWz9t5rzRz2H44BhK7r6OsAgBwAAPDfBzgcAmgDeLi5wdxcPGAwmJeXh4//xFH+I0f4ocLHBU/AT4uLwU/DYBLI8yiJM3IIGOzcFWk5BfTFixfFUVgcRlH1vNJFxf9+AuTl5eU/wg85ehSiKAmTVPz/HIcNgGM8wJvAEhDwDIDjGBB0DHj4FSD+b51cwP8ZgP8VQA4QJxc3mIeX78i/CWVCAA4gCMTBCeLi4uT8NxrwbxzAeYxLWBKtyX3cxB58hnBCMSQ2nQehVdwoYvpjCankQAzl5Tt5CgI9LXUWdU5a5uKly1cwWGXtq9d0dPX0r5uZW1haWd+67ejkfN/lwUNXkqeXt4+vHznsaXhE5LPnL+LiXyUkvk5KfvMuIzMrOyc3L7/kU2lZeUVlVfWXpq/fmhktrW0/u3t+9fb1DwyO/2FNTP5lT03PLK+srq1vbG5t7/yHCwgAAf93/D/iOvYPFwcnJ4gT/B8uIIfPfxOOcXJJormFNU3A9oTjZxRDeE5oxaYXN/IilEyXRByIP/hOIi+OSy3/B+1/Ivt/Byz0/xey/wPs/+IaBPCDgP8OD3QMoA5YFEj1cLe8cutmNcv+eB0hpFdrKBq30/uk97Ll4sPJitc5BoqTCf3vXRI6wlcpbLHkaRs9XvUHI7vvFAVRUHYeZpZh+CfzEPA0sM+y5sWjfkRl+bOFgTMLnPH0PcePHvvXnkyCleNN3NZmiDryMUPWNlf5u67G21wXZXO2NrL3HcWSW1h9g8li8Q8VBBLzvDyaYuMvY1pUaMujaYu37y1FPcSrbcmLYSH2oXp7FDvQqqOqAGGNzZ3ik/aQf6nD7epv0/RrikoX2qzzGt2znjtGIOhP/9QKzm3f+4M5KDvi5jD1Y9pK3TXSwMa/xvfF4nNIR67fOZ3FVwJp7p3ovp8dl3fcSkpuS1HaXvgMNVveIMV4s103oQwY/8b7mK17V8PZKxf7zyjGOa20WqhOTJIogvaNKPhNm/hrPzM/GZByhl5FvULaqBnrSoiMwTxQ4I9mNyeZ2892evxhc/gHVuT5Xx+MB21HBnMvnIjdLoAiY96nJiiAJQQX4k0Hj0LP35o7aGcnDv7QlXC5D5tvJtCEATuOWe6N6VPGV2+cdqah9UQInAanSzZszwPBGEYgECyi/OC2Ub/w8MNEA343uKMex9nx0QfTW2zx8Cuv6+JOf7u2htm3sfpxpsdd4jd/uyJi8EPaBz+n3eVFvirB0R5+Ye8Ug9c/PRY+5513H7SuiD5jxeINbWpvuQtkIyq/Py58m/NtkiESlUnIkzKx5wMihoYqWM3S5W8M355uOdPtxhI+j+TlSHduViA0dqolscquBP8c7jA4LjpHvHvmNFKruXcuU8pD6Br3BgiPSHmhFQxaQJWwQS+KpV5HFmQpVk//aC0VWikpN6bwk6hJjL7fFZk/PKv+cLANy3x/ADibgZAZHxDNLoDMLrA2MLi8Mv4Ik4jkMuHjB1J1YYFi9eEX5ublMsVvR21g6oXax6fXNt5MfzibLFQZ8hfs/cfsleX2a/wewwGYN1dwMfFHgd6xge+qBrJDpVmq2ejgJjsEp6daQk9hqsNQw8/5Hy9TvmoFF3vkRAfWVe6YZfz0/NOWYVjRwMY/J+JJ7QJ+qptM7KzRLi53QE+t4uS6rkhelMDRK07VTx/KOj5wv5mQpMASvUdgggETlBWiZt3PaTTP3ZtaECnGQuhI0o+Xe1U8BatPGkL6wOnf3a6E76GrNLou/kJkD5mbggs1OsGgoRdFF6Okc7yV3dNeB2pvy1aiJwAabTEA1QDy39QeUcu/Djs9j4tDSD7vbjVhK2tCRRPbTwi0deqAd0pVnnECK97ETnSjrOkHNuZJ8wO7TGRcg2JU+nMmK/X6yGvdnxku4nafkCXFZ9GVtOVE1TibdGaZLndIhjavXul3NQ5deZHqPICQL04DAmncxqO7zIPuHwJ8PxY070KFp8m2sVz1JaUWbpwOoVIBX4UwyP3xBrVamezXYmGXCpqkUl6hoRsfskckrOTyR6VhFb9BahnTdOo9gWk1Us3DxHj982PNvnsdExOCSXQw6nFVsyKxX1U9wyY/87YlLTep/1rJAsDlwbBfpz57mPq5+5Z/xVdBEZGutrhRg/Deh2PF1DPeyF1hBSBXw0hfz0bnHOtNjnzzS/hk0YMPExFj8SLDhLQooNkZj/j4VXcMTiAweYY7Pktftv1yyiPEsy/cvmEKxvoNKAxUVQC9beb48+L7Jy8DlHvlpE1KJE4QjUZghHjmXUPlrpKFlRPFJtiqx2vWwgbNiY3y75AB7/nSjTjvazMtQcF+9reqo597vrK5JV8o9/id30bELdAcj0Xyy3KjNooh+MY6/FGlu6hBTYrLa6NPb/R63BW1StwQsRXqPn0Ulxf23RfjT3N1u59GHYkekdYANKhSXMCAdQyoQgDraVbj6FvmTvXWL3143or7y+zjDuoQMlCNsKqOFCIq4PAPLe9cMLnlPn5ys4vV/goh9051w2FEEYLHqfRpno/P6pgpmfam5mqaIK+3KPCgHo7ZwZxcoDsv6O5XbsZuvBU1tQnNlsLpoEOVHWmBmLyDzr4/4r2vHZ93HwLGIZfbRUpv32kUrSg81uY4SUqcAhgbgoGGuiJkREYrMUbbPaddUei2RB4yVmHbyKwRDAd3ke5Af651fS0oK2pbyX8fytuJ3vTD7R6IIB6SnYSEEhOXZWX9QhB8ObGVsfv+Zol39sesW9Z1US5qiYOlvRvtjlJf8kvbhSPQ7MlGN3ew92/cDlGmJ2hgkxj07sitiXi2p4XwugrkEOATYSuuJVjg1vRuOvE76vVDtwJJu4YcfiPMEM1/ntXjUPpVZmMh+nSpU/TIHIg6toFd3DbZT9kfD/CQn6JybJp2cU0oIMsdJh+fxEpYTkqh2ic4hIQaQLRNCDuFs+fi+wp/f5ta7AIsPG5YWWW8EuShMTFGZcQP912tPp98hNexu0Do3PQJSSByYm1sIqQvR63sxG+xH4V6ty4OeY2m/Db1c66zG55DqIb01fd0+xErvjYXPyqOQjxMLJi8sGF7RfE9OjzxsmOceVwG7LEp7zSN8iLnsX+6q8k3WKTBo+RbL2w6EAkreuJ4Ai0cZ4jzKygeYx7JfPuuq0DknYl4SyUSoCAgiAKI+QfcfPDNOUfC6Gxzv6QG6B2/+0iM0iiSPVp75IL31nPfyg1sXtYPh+dPGN3yzuYqpneSbjbhv4CoaeKBfn/TintKI4tfXkk0UP3gzZB7HnrrOTMR/esVCzWEU+q1nX5jY9eaM+gx0BEhwsk/MbZ+z3ajJWNX/Ib2s9L3nGDEEbewvNY5zEScysSB7K7y7K2jfzICqA9mTt+Q+To8vWQ4nmxefV4fOmm+GmELo6dRVmRUAoKuVZY9G54ZdL3OQl9dlXFiIyY4JyZITCNHplPvybyigoTyE8BoKTL/mKChderXnZ4j2dPfr9B2ApJjgt9pe7ytJbP6KhzfqH9yHBY7P4QA3Lv1QUt/Ye4P1dDBUSLKVkyzAYVH+Uz45ie+6UwguMt121p/EG5b2pt0EC4UiYZKVRJorNwxJysbqagPhEQbWSc/ntaV46OLAlutqNSc2+Fybg6PFVVkvfB4yNWa4EYAaIF3J9T/jYHcvY4rLw3Smc2eszoK+vCyUoIsoFEYKam2KRH/pRhVxLn29x31b8tIR1acrL91g1KyaikgRsEGhQXqMXF+E30Wl1NdSyJPxhTzKVzVxjN2dfui22k9+s7uFwtLbIaEZhrjW0Hegcuqq40m3WuY9MmKXa2dP3f48Rsvef34tXrOsjx5+HSHUYFEf/5dr/y+ikRLsvvX7s7QTuQQcqqNW7eliYDtBE/3Vlt0uzk/KQuvOxFf+m7pOkv89eMbYqUTn0qPfvsMAFI4IUNdgUGFAJyMpeXHZcFZus6JmzwVJkeQvY3m0LBQ3t3PVVgUtdZQpnSlMrzbKEKl79WH+yZnTS87Fr2OoY15NbApXmcqFi7OQntKE71LWMjPuRDQjyqs7DRjZF/mUY2Ki+RpWW+z5tYznC5w9LCdsNUyS8RATn9Py/dbP6s0qXSzKKgk0yrWQPZznLQwbVkU3uFvr2vY3zBPVKnFmW8LPpjMlJZ49v4Vck4iUUIw6byO8jKVdEd0sOmiO7Si4kERd+9zvSEKMIzB6qLipllGkURZG83yi0DAc98dMv+auO16vh/x8R8uilH6t6nb9ITcwc+W8Y2kv0Zl7+TiYEIAxhKLOOE15bpi+7B57Ii+/I2V+zrX7OZAS/c4Q6Ja+2IbNwuT5+ZjRd0LqlPfhvCxOP+xe4Xon+r2s7aW5vfAbdzKMU74Emec0hqqTrA3vt3iQGJn8DfjaPbv6civp4vLa6k3rw04vgHH3upa8Q6hcXzgkWBD5uleOdXl6ort4KQ2aIb30cY7DWMwx8kW1QkB5V5Wk4fF5CNfiGJYpcxeE5JCj5TTF6v6m/Vm8AesKOIEBFll6xhnzS5X6tsibZnIVV+p/YIp6x9bi7c/W//hUvFzdqyD3ceyFaOk4XMICIaTrsjDtP9EkC/IuJr84sjbUMtzmYDXDlcEE/AYifW97fyNoMufCtNCxnmVRQBRNSlX+D84zX+Z6zT6Thtz+VsrnNwuw9/BK0FY4VDk5SNRKF7s1Nsry6ei7pp7f/lu+2kjkrHnf2V/pZ517Vqx0e8S6OKKvEiqXPumbv9IbuhZh/dHolrw+o2N4kqwnY0DC3/D2L8JAxBRx7CUqpHYGJ94ZmBY5dqlWNh4fSBS2234w3vKMUpYZWpNj2feXPbR90PulSRwR2vUELy8HIgTnUSyhnCVQ2DUvCn6a6OM+9vzX6nWQjzDhIZ11TXGdB/NvE90r2WZbk4RAacWBqFHK64X1N453m7XcnlscSQ29ZUHk0Rx+Uj+5N3+t5nIO+hn2QwmBlSThtTW13JelDvBriZRlC7YUn2nlFP7iiBr7++tfNODQhe74cxDwO186IkrYNiaREwOHD0EogXi8l0cYtLudOooVE0c4A4BueC87BvWybJUiIp4NaFn1wUMKlQXKDtTncTD9WzbO2pvlzSq/jGwDIARVVRMEwbM09NcqE8Fjdoyo962vKo4OkyzI7PphNFlhsnNhGN3yjFyI9GSRehmo3rcrpN/97hdSf3dgdYxmACukiEeXWB1q+IKMPJ7qKAtK2SdoZa0050Ryyk3sK2Qbrj4mZcFrjMC4YJOnxYmU4XPITiF0JTLRhVYtvrHcQPw93N2vvMhIRRyQFBTmcbXU00KthFyBp4Hy3sY6PzWm7iRbqYMhdAnWk0LCuHc15y5ybl+Ss6kzvkL3SZ3bHVBPRuXb90opxPobNYKPQSo9y3lh5o7GWfOtwDCaNHj7OGx1R6vvPTtp2GBgaYCPzWZpL6+aDfHMkAFhOP1YJX9Zj2we1l1BYfuN/2iRKD7Ypp9Z+O3XNJmsHMPKVoJEGynJgPKyPYFwdXFepD5SJOWoNeTqL/75M1WuAYL866pSkX41hJDzn8FOE0JUj+o1Yl0jY1oHo9OzUaHpAYOzNLJPaZ1DHUlkQXgGGnBt3WM7DN/vbNZOxFIHVPEC6DjqWOeamzK/aTq+M4bRJ1bO5TjNH4fJNkFttGyfjbDcTdtQOZbJCcL5skomh/6iDT/qajEH2nJOhIb1T+93rhjoWNfFF/l2MKzu5wwv+oCRi7Ta3dWYibWUc/eg2VX8ZfHJmL72ars9T0ZlPRqhCp/ohsLskibCAiK5CSYvj8XcfN7sKI+KeTgxwbjxkbubY1OX9lQBcGPJhTPBrZYklrpt7MfrJ8VHa1fcFONjQ6srUvgEDIPpviXsJEuPS7dH3On31g76SqJuOVpaI70iIHZYczAlPzLzgrhwOsC0MhrbPr23acCgWZrJ6rDyMf9nrqZW2IY2FaGR+XExuxib1Zq4NLlUAUgjvlxS5AckjQhFBanK0sTDyQDadT9a/IdqbVOrfIJAEeUuHZfXYAu6I0lfE1Y10su03kIBQ+sl8YBmvVwW7Mv3kyHvnP0gQymV9P7UZRdsTKLzJhzI5Gg1Bsbi13x3d3peR7Ic+MGXO6ZdjFK3ahhT7Gqne6i6mPsY6EdtwQMSSHR97LJYp9DZlzxT97fbzU+QSnGmDBUgwS702Ytvqb7CPM5R4yN/mZoKbvA6L+kEwTokIUjle7b2x6BtmLbmOZ/6bLGsXLacLUGg4FM0HY8VaM9CrbMxsScm7s7eXdCWpjgPgyGFWvxxgKcKGk4/72SIvgH1SXAHfR0935OmXufQcyJsGjGY01qkviXwNpc+1N5iOKHmXwNdvNcVcyPRkbae8Um51cuzweM/ArGoKi63dj1+das2J72s9yEsLBWBAbmT99vYGCyG+qVHbkENO1/GPotxg4LLqzguHiP1hqckrv6VehrsGCbTkD1ZidhqK9AC/o0P1KCMrHAaO+hiY1wk8P6+c4iO3YFvyfOKDFB2X4AL3gAWo+XM9wUrzloyKLZ+cyOdovbdp3qoetggoUbo0cg/5J9Azq240Izd+4RT6jg4FYYkFPxwmDXD86n5CblJ/XEprzAeCSres3GB6vffmAfH6oNK2ptWMOKDTtRU2p+dPn00NkODVeETnHGx6V5tjJN1ueNsUDt4iN9otROPJFXbCRAwcje7I5+ua1H69SJK3L9LSBVF8B/JU/IIkxIEcCltY6ogGMRYaM5rkJX8i51sj5BOSnkgxSedbjR+I2wGAEBRVJ3ReUibZfwwibn2rXhJo7Lw41t4SDRaHD0R9cXZ6JCF0vZCChEwpNFBS/tHh+6KIlrJ+hdaUF3H+kS/4g7SAlC3xzWBGTY8Y9HGJLFDgGphb6drjxSnHqNt96233uNR3HS02BEUststP2Nh6o/GttWfKSnNNm0CdiE4A1xVzk1d94wJ4rLAwmnOqN7r1NNjQIzoFlVT64b89MzXcBimWQnYCxzNVujIz4YjMUOhazvKQYp0YG5f5G/674djQRsQhlGjmHxQ5CZB0Uf05HnT4Q3w67cGXb5r/jDPOF+3653iFQ2tgFLy0l0sBkz6OO4eUaKhaZxR9p5heEEJghVaPSPDEaxfRdeQ/hIEUMNDY5zKi75fyKk5HnvvDoeo0Wh1+JW93Db86E4GYecNuByHFbKF1E/zryeyYyWo4CHAWaNKDi6OyS+YnneNLJDb3Z1UqMBy1qejafr/t7L5Vw491sbTltvVlQM0O0uVJ5wLJCt8zM2AnGJxu93CRBap+lVbGhuJobzcpcyh1ot1Zcdsj/alvOakMA9XhlGoRwgfWAHnx0vJhNc5OTnGc+8/AoaFWOh+EJrJaE7eiDAhbv6bFzx936klEG6QxvxFE5ZgfMCXBGrnuI0PVXwBx54zeuUll5r+C2DcIlSp3wYfx4ENRxH1Ojys+IbclolvbrGVT8oTkpDIP7iavo6WMct3upWXPvN9SNPOzr5hBhr8t17v5j/bg7KEay1d1X7mTWvWyKas5xlhjRmPnMhBXT85GeHivMKLOLNgsPdq6RjQt5yin/WH6UGKAiiXugNICnpotdjKfDM1M8YME5F3DBBzrJPQJI6ogXJjkp5CyLK8lOzSnQ0sGyI6nEbu77FdzpSB/NvUjHbRbeogabcQef3vBi2BMNqZlKllarH2CYc3LfGApfpWE2e0bVkSb2eBPWw1phL7FnT4fNM2VcgCIB6CDDr6xMbYIqsg8O7wgqhIbZ4PTeBAKU+Oo7E0H5TLBGQi9fvRB8Ceuf3lX/ZJTkYXOkAzm67FDOxOAY8v6n55G/cSHF8C2gPF+nqYCMU4cwuVoUz4KGro9g93x2zDEyo94HYCx9HxGz3x0B0N8WMSF7ibf1HxTlCfOrPnOiHVNPP5XPHYgx1P04FiZMdotq2WiU/Rdd0Q/aqA1TEyObLiwNn/YiKQGhzAKGHvLMxbSKLShQnz0vitdl4HA9uxRc621174+0NYbVJGPxrBYBaxbjhuPSNn0COUWZ7/EIKBhoKgHHR9T0w86IgRjf3HE+L2vbEIYC+/yyXBqMaX3Gj7Q3bea2x4Ts9xQErxhxa4jWrQir/bAQ4S9Gs56MkQcw7ZmAGT6BXwZeUWTMy34s4K+8MDCpe8ZhnbC/2FVjEcImjTbGtltNUA1I3XGnv0v2+xXI8D6QFwu4iB6ifNrJnEN/XazHSmg02mCb0z0uCtrH00i3wjhYvR1iNakVQziRDs1npzSO0fgintPpKx7pa/+JobF+Ovent8x4Wz7CgPJgPe12CTDwn5fo1ML1IQfk4nUQh7au/SK5caJWggEZ8D+4EPfOEeU+c0ZQ8bxwwd7w5QJ8dg2GyqEel7ynF8aUMUybYRZiDOzzsvOzQnXhblDr6hsiRruhl1lDF3V/mvElOInJKncMxRjdYhSqHAP8yI0/z8ZdHIz0g6AnvCXJ8yGw3+BKvymtUKDf0EzXyL86XYbRhdKMrpFbfQU7eqdE9f/Tc0U5wRkBQQ4/bd6QvEdDImXcIqKv2gtcGgUxDR11kw1F4CWkmZo2lVrmAzW3hWskhjC0RNeZ7NhGLZH7vTOGzVK3lG3wJkkRDH7sdx0INNlWF8jdN9DaaqvOjQj5xNpw9Wh64SX4jdea374Gx93IfdGOBmyzw68jJYR2dVRpHrfoYTgDYCt+hGF9e03oXKqzUQ++wQqjSxGibM8r+P9sqU/pjDP3aCVSlxulm9ZFO/zdPrqtORocPjizTt/aMUGo0U8OfvElK9leOVgJIdOy/nsnAXQN2uUi205yjh+VDjez74CpBp+7+usS4wp/1GqjtiGmYX2NvRXaXXYPE9p+fvNNAAVL36AKCxmq1mEtSrSMq7ziux2CgAFbOZCscvah9uj//eqljh5ctRcCbilXXnAtc4GW/KCv+Fi2j/el4KC5AN+iJFxvuWpPyI4/ZGlL2kqgTaHvZn+aoSo/IfnWu2NhZA6jSggKB/+ICbcmHAMFxjXjZ4A5CqTunXR7ncpfHOhOh6hgW6jqfy8+izdtygz+qpmb7rrN+J2/2OH18W5MObWwmUFVI0c3ZT0NX7I4OYZlqTYjRHq+9c/ZcefcmCf0ibuxccJ2uA3hMkee7HuXZDFFAASAfp7s0tntQHyGDrtUwnjIk0AMMCcOkBvGmRb3Qm01YAaK3yObaAviJ1wz6DThA3wmgGoZ4iKQTgv+xaZ1hmJIvHEiID6MdbQiheYvvXvCozdcPOa5nPJ68HBL9GQyiR9Znq5UJGZv4oO00Gi2bx4zqbWnA0aWzTwWJ31tNG4KPuIPh5H+GMij6eoRE5kKn0JOMR0IYDJTdl5OjbeB9BIPadH0ZwwhZHE1j3B0+9kZCvU4LCMRzG6Ho/4TC2DrncYpJl+jm8/PRi8/smiYlyMeogRnrzOL83VsrQwlW9OsTIKqyuCbTka7c8ylqVT/Oe+Hg33kI+BN5mOOLJiLbOmygjs66igZ8eyaN7L0+rXV8+M0sIe4KDyNYU7sRF6xWf1eGy+GeKFFtunG+J5VAV3ZBZWPfX3FRTDM1Dwn2ZmPhuK1/FuDXPTCBb6hIZ/E1yXF0tg/HgExr8XoY1FJM3WVrEMi1eboyFT2nKIiTUYqPjOZkUWiHgJphl+m9u5/Nv0NOfksI4YqwqWJnk2YbmNdDjffGg5HCoxcAPi1MCQKNFB9L6bosJ6O6DMHrIvM8wvp6SKMVNwgGKu4pS1aJjA4/OHP8nwe4dJEvT1KqCpWHkCxf28Dsob+bxlkoOlXNXHYOlqva1mODUekzhDBd4yDei+JoS4ycPoahuuup6iWx2mOCv+WkKNT0yGk1hKFJGxMmH2d4KGk5uoathMXgCZQA1vw0ba82bwXIdsS4DwtEYlpgeN/WwX+CdEaqqOGypFwGp90GZI9MWVtkpn/nt/F0fR+cobrm4IcIJfMvDyGgjSd+Vt0fZFMJoUSVoFFdFGa72vwD/ZaGDdTkdSOIut3awA72he28AKWfFsRwqC2QKrz1ISx6pNo+qZPnPTHNHsqfpQujK6i/xu165ufHpfRjmoMi659QMfB9I0SBTXLKl6cjCexgCLtoA3fwKhmPCbjctsC0WRaZwlJvNenkQ0MQBAiUr17aJIyJqxl9cF7sntpvnyf1ScvFqxiQzIsMPkWV+H4i6Wb/7J+jOlMh+AjMRhWw6ATMrhjCwtXs/218HxW7u+Y+lYGRs7Uj8rQC8EE7e1btLNTuX/9Sq8pnn3cRzEFH6Hz1haV3BffFrQ8Bi58OAV9/WN/lfhPDgaQMCWujMoBd7DSp6sCgqAf938Ntgi4oyk4o8OEBs6EDYwrMvt8lf5wruZFq5sUK3KpjKTklYV1U2o4T4fZtC9bzk0PtFBGzv3ttmcCpNDoWxn4xxFNwW455vODyAwyMDZ3DYVtmR4fqVMxf8/DzSjZ+8RKcpT49BCjt30RPWImjefQxR3ei27EiDlMO53ZoMMeqP3XpYhd0XGKualTZ5kJZIOpnb5ZY5WynzMMrfmihTO8jo3s8i//kRLim6Lyx7XigrcLjQB61p2vMrvX3Muy5GetgTZXiod3Rg+Ib30WanPXc3GGrDHjNcnynv+eMTAN4boKDu7t1nmHr78XasUDVhD8WHimRipfiJicwILM0O1a2gv+v1DgD/RN6UGIWniGHYeBW/DenNd5dcnJzAtVjsSCJ3bENeACeYIqXL1Jsjw0VzW1hqNUz628HCwHvXVIzC9UFRX8O0FEO+vTNWo5fPoIrRIJDGeaJoA7HbnXzxKBtw1FIDshCpy5pljowm+qawLMK4dA8Z6TqGG3koZYslv1usLFtjwELzkACY5SYZsx/CuiTqQ4e+RAW/L5F/DxwMaw7Bk/SlCUqWh8LxgLOoXxwxan2NJ/ZxpyhkM+KRSNFMeb/KjarkV0/PuN6dGKsClgc0qxMD0xzjO2T6Fl67LAbxmG8wA9snI+lV85SBVm6mgwir/qvJ51PVyuDNTb/ebbRhfW8guDjicQTCRMiiP0ftLFl2s46S4SvyLqH6ODm7uwhmPN9gezyUbvHvJzSzH4EE86kDlF1/qB7iODijYuePAuSzdZLLYJ/sAsBJLo/Ufkn2kW+NqILb2Sn/jKG7N3Ixs4oX9zrLmrkhHEdAh7BgNSn/DDPKfLfDFN+P0u5emnO8j/tQ38XK9dQH2+YXa1tNz3lGS36kmtKA6W2hcEszg6+/xDefMUDBAOzods6RCwKwjTpizcbPjWYpuwO+qtK4V8hT5Id1ZveRDVBQWuEGKDtGH2EDGy9u+9vfLlM7uKzIvwRbgdr6kFOIXl5i/rrnq+AlQzsGNNYAKfUDDYZktj59Rx4cuZUSgGjvZWxdVAG4VSDlny4nHg3rO9jPSAo6swbOI8MUga4389QKVHxUt1k14slmHMURDi7hVrnSRB6VrvprBzDLwXalTYtNpLFLTjgImOVMd6bnywwObHQ+aOmcO5JRjdun1EL10/89gyS/EolqiEGI1tD9WVOD8VPm1SeJZp/RKngyXSap6qLWq2/ietAsr7EBYiz6rGQTtIqB1msNv+sI1vIdszp5NEQyt6wvx3/IUBAR/kNcA8ZG6mku5pg2rDaqWssWIXdjrTTzVJ7UtaTFWIB8vBnhRrq+M6HddOb33IWugAmOJr4NGf7/e3xejtiVVlVIxvJavdnBH5HwgGsnrX1KbIxY8MTQneUnohAxmVpDv7ewkXaes335rx9aW0oChjXwKLgALWc0bCu9fxksXvnc+IrV4PVn00QK6dTx1W93xvatEX6ifZXiOL9WhvhWzMq66wTfMigc+YW+G8hqKNDKNQ0XWkomhxQNxkzwU+ZCCXQyF7/lCY/xeWNg25k/xEnUmnwV691NoruT5X56tIe1c8C4gGqqelqbMjFSHjblnvDBTy6M5Dms/6PTzPSy4VSXM+YRCWqIIpzmRk4okL8FhOVlRSxkJNjW9zsT6B5zvdm6hyV8VhocJffs25h1GEZhntmp2G717ppRXZ4pa7l+NHUnLs56dlNVUlCoshQfYC/ZydmQRdcprdg6TLMFzqiD6KGqVXhVOgpeUXBUH2doz0LdhoHmyQKYU6p+cGUiqsiyydFUqWY7gsCeEKn48guFDy5237Y44Q0DD3hA92Orpynp+2af4rY1ZCgxPmq1UaC6VhG4GeHt9w3v5zn/j4wEuwLFwjQX1yHTD1c464dL3FesNbRbxLTlbiigZkO6RFTFivVAbWFiyNCMcPehwBeZhUbt8y87i/pB2FPHqWwcNvs2WYV/xfW285gzoVWTtB2tNtKYGStXkHuUNpfbyhGwuVh86k6v8X+6BxXje9FHC1GgWku/7qYSpBgnfQmcj+9ww9FCQkLo2Jwgqsc6S4SHERNEKcQEdMs+ITOTd6cvclnE69nexvFiXYD6OJ2qGMCeovfrR48k+DQkzi+6r+8hoxnamDW8jIHy3+EJaCkqpp/DMfSh4nK3rl9BLu26+PFpRUSrJBo+1Zx7R7jyDP+zs5JcQNju07r6hH+3uzed3eaLaWu03MmpwKa/QVy0llwvTz5pIsftkCTMBf1C459EKSY/4EIFC17chWgWYMs3tZVofoDu9WbfoaswR+nqgoVNOMEdD2CTOYpq0b4L5bEDiBrkvWvi9wli9VHPDxjeUqUah4bm9AcUKkaDDZqfp5MWTnW9p4/fO0QIP4X801y7pkoQbQ/+HjeFBBOdoGsYRkmNIvnPZHRAApwtnVPUC3TZ09G9ZRES0eTBIcA7mCD7ALwmSO9SRw7joGgZKPSDpwOaOvT1OxgAy3VkxOYgT1busbmjID/RqNYRBbtk3KeA1jLe+zY6Oo0tXbH/HoOKQGM3dZZIIWErDMw013rrTkdFk6i1uh+5cuBd4fFzUbrDXuSTbBDvhPuZhaVD3+wnncptvgoJpiNhObvZbpA2SjVVQfnB0a0mtuXTJvA3hrToXqAGKOtZXO5zDh5G6s4k9O3kTUWwwtyLQoM/2IJ4J6EPR7v+vtvxJ1VzEoISr6fqrYqvkBv8FTt63A8vVEgNsK5fexC//zbv8IMpvoseMvEIrBVEkudLBevOXi1r2Jim/1u+9nqfvK94xd+29KOHUxhGsXKCrJteXL0jrjHdvKNATTAafDqoNhbHQCxG25X0gG5U9jGbase2OqM0rWEn9m1Dx+xz3RYJGesoiu53P6gGXdykEuYhUc53B/vnvV9vVv+vc+Erb9KBMiciNGY7U5vhYnfoDZnVWNCNO3AAHrYIaBgev7GqyL5vVuwfcIUmdC3pFZawf/unA0KQOjUX4MeArAfc1XPrjmbIdjeSzmcsaVO4oGEhtl/2XH/nzCITb+ZeSxGeSLo7iHgeogC59skrkE/8GM481624NLafEdn6lSxUzB3UOSDvZoAdbGelmhirrPXLXWfsKhCbs2jlAT7fjq4vuz2LfCA1P0GwGTSGrgugGfRmFv93HYFIUajM2C5ETM7o+zyIgGSdBalcoXfkzlGmu3GqXQXxZ/hFBIhXg8GW6ryh6Te3VuH+/dMhpS14n28ZHwndnbpEeluMHb8Kj896UBus9kQR5o6ev0nCHDng21qTaMEKx06h6aPpii8PNPaONgU1uMCKmYVQaaHCuT4p+ImaPwuPt/DFpnGYPXUXoW2olBe+2AzdmtzoLGo6gQLqrp26eK18LxtUlUxA8KmuaytTQ9GXCfHyCqoYh1jY3Qx832FftgFbuUXcT+INqTLfDHXhU+s9rjkPBEYUfqZAeB5qQQrnhoGBI3gMBPUMGjj3w82xVA3p2fLYa2NqkRDFa9FRtbJLsJwXqIDtEJnOCbTbnfChRO4WUumDpQ5fai40MoDuFMJgcBAQ7gVFTF/iwd15lKpk4DJascKlFqtaDnP+8tpWU2JkEZJmzS1SvYhAI5rVHtFbxR/FuJzMVLlK2rS0kVcOb5HyA8swb+a6qi3UqWyqVPZet/t2JSRSXc6rl45+debm014LL+CSqotTGx7HY7N9BZdDm2wCxVMZ9HYOMJQ8ewNI4Iz+JxZ4HzaTqqdsvgTsdrdHqTTXmE/4pEjjhe1PjdSTf5VJXKLJQHwjtFYW9zyZ6lG3w5+rCSEgKA4j9fwa2AYEFbu9GjhA9k82Yoduev6KklxugDHQt3HOY5r2adW+oMhn+xEQHLqHH4NqqwCfVlw6EktBkDBvbFE6V81XY6+uw6y4/iw9SXGuxgUtgpzoTaIj6dzpiQjUWfMJ1tsg3NyZxm4VUZafsmNkxqFbbwTpNJjsXGChDgAa/HYjEyrTJ2fJBEMvcsdlAhoFRvIb9N/Hd5W3t0HpidPhBphcQzYn4Tnjx1ssOrdFvcmY9sVLMdoeF+YE4E+HKr800O0+Yo7+AEnKAbYAO7Lg/vOto67+2xPpyaTnXUB0YxsUshQ+pz0BwvaJxjX/eGvdmR6AFg9WpXf+Owa1ONbIQIZk3qex4MHJREBN6dz+80IcmdWSUr5HA0f/lo8afVJPA12fGj13cmYYR3vIjlNBAirrk3l1l9nnlBZTG5oHdwL1tGY+hzWqMoqx1xEf3yqYfgH4KHX6GGoq7kOJwyL+X23iQVGXNJMaqOV0Jb8msmrsxYp8YFXvCAtTwjD+yqgnuNTrh0soAKAX/2ZC13l3+JSXSF/rOSGNMSvIBNbB3GGSjEqjltGhTK+ITYPaQvDfvbUyG64shfj7kh+nmT5/HDDvKqaPrwKRWMdcGJwMj/zs2gHjueiaTFfgTOkPfVU8XB+AjlhGzmmxL//S3W5C0Tn7dScpmLy7CwV0zFqsyuhglLVKzgVNn09NejDw9vwitT39watr5JKO4a07TwtOm3gPSR6gCzzieZyfifo05eNmwRZ+LuV1WfMXQOI5HNGYXfL2IubmXcwWFfy55IPvASSbKaCdrX+2djQfAAWGR8MgNFTC+5P/UZ0f9b0k5lWDMjuHXlKvIu4fzYeuvKr+hMwAkkIxaIkfDmP/jF6TkdFG9b2FDo99NGXJpr+HkTOfFF1DAsWJGoghfV2ZHW75y/ayN6UNaR8c3HNQhj7IfIc4zv1J9ZbmdqmKd9p5vpSUfwdAvM5EilfHVHI5W3QYIowOlFuYdso8BDAzhbsK9OXAUk2AsBTPLMHOF6mq3yGZZNHK1xgbtKftEitbXhvpH1EzaFgzsqds7j/cnuiMcKPe0IAe6epkvm7mdd2jC3S4XuB0SuGSnD7CzLqdfTWd0Ph9Z07F+U/JcJ9m60egZqPevWp3CJC7IR55fDoHnZFdtDTfdmGgwsPiFMH5yPvlZ2BXFiaHAuS/1N1TbQKzitqg6hbzEv8bhf/g74pfdZSwJD7MptuZNa3xHDcMsc4DzfsMeSsoAzNNnYanNCn6iUycffo1qczV+WfmPzVOyKnn3fG5TF4n7hMp5VQYrDTb9bfPhxL/H4/VG+yLOaU/rt4ouKGs9sSdox6gp9s9vIMnnDf58WeLjj8ibpY+qXP3ehk+/Jy7dd0y91ngiqkdhfaOQRUwuqC35+PIr72BV6CJx+eNpvatKY+vJiHvHDfNir7zsT7CyYJLInVlqPpLJ667uVT4+uZLwqg9JWx92etnhDeIxyLwakF+svCkqimaCG5dsZAr1ZBM0Q5oWVhAEaPiM2KKylnW8CGbrt3pmt98pBD08bY3TCPtb1ZxFc1qZKlDoXaHqvjIyN6RQP9Q4XTC7BjXzZY3oa+/2T4+aVXP+tD1gyexw6MXi9zSwQmbT8axSDpOv8M7htWZsA9463GglqK9/TZZOejJfeGQ5dvvc91kRYCfPp00libHzDQSbj2DSI72zWrekX9ZeG6d+UvzxFZ/e4Ol5OPPFdH0g+EvwYuckZgmwkhg+99479W9O7sqYl1SZRX9yHDC539q6DyH8Y5OVbcJ9hpxr5I8Rt/bWYPEEupL9ZqxIXv3pp54/HxysB4dcSw9sXjcZffpyHtFkxCUhddwqrqTvqdD5Ty3fjjKXvG6BEADHzqmnleMMPeEB22+P3MoL5txbutj1b3TqiHf7750OVxfpLar0dqqbVjVS+rmuANFDR2d0iPFTUS3nTyLbpwiY8N7o4BzhmS6EmsWr/FKGeFrdEGRZvU5DLe8W3ryQSK61dxDeh+Mx73qAt1X6m9AVA+muRSbhSoox7ZR3/V+5dUId+8/c4kQTQMoFgpo4ll3tVUFdjeuORgtZ1AFbG4EjphJ7a947Oz7/qu6t6r3PM6hE2qoX+QotqmazHCPraP0EYoCxkJa+bFGeqo3y0dVDLFfOdBnhqc0H6g56GZkEA18zATsI0jnsLbgWEuk4M1PHd4HRrTDYm1OgICt6qXdBFwwUvRmc/lPq57pZhf7Sv8o93qnuFYHKfTCr0b/CQHg5E4aiVXiHksrSfXgYVsG3Wwu8Eh/avx96Qp9+pcanXHtG9mTTs4Vt2MXDhY3vE+UJYxKmkdfIg+BNzJPATwyaaa2dc0ZX91X/nIpRzbH5oWQiX11f98ec4p6PjQjQ8vhEd6r0qS4qnoTvWnE2LB1L3vMP4G5U8XIyNtE9npEPCD+Z2e3pOtG434+2puj0KjNq0kBILHAnrXZ+m/hkJfRjl1PjF//cn70mgy6BSnM+EQ0KtuGxR/baCp0EZc+kCO0Kw/Hx2YsZwdTMxIGYAaD4ctzjLu3bZJ/JrG1XokntkHmvFj53DXJS0tLpSUakTInQDRuUlhVDAcM9+1Pvb3A/qWvL1kpYR9QmsLa6uGTfXvkV09TnNHQMGhKjG6Hr+rNi6h5ZYYKzEDnd2UsCm8v8++dFz5g4LNLmIGSLQ4pHFihyKmPqBWZg/ZFjB/0tk0hTlI2V3Pb0z6tgLzlDHwAO9+noDR0fHMoOslOrOmgJGqTpsd9hqnJ+tnxLkYBYchDQelblj0jX0yuxuRK3JWRF4oDmoV6tfIpn8+BIQr8K+u0P41sntu3vOxa5eksRUAIlFAOX6KNNo3moU+A9DsVPrrFFfVClcuxOMF1e8qd2+ER/II+EyAWqep7O74Gdx3XWpHWjAvLhK+rUrqOgQIXn/FvVKyDQn0F6AdAuiMN5zP2s+Z3noeVT4vGolQP8d8QqfXzrSFxhp24kMM/Ro2scxDQP5752CpCGi0DHliA4HBwFLv/roPEJZ+ZhbSAvoIE/ToQTcRixqxdk0oFf8IRAg1DJQ73bXTUx58saax5ZwC0ahNGbaGnaXvkc1IleWTKsoenZhFijcbtprq8XDJoFoLwOctrIkIY4DhPP9M7axG74RjUJxBUfPve8gLu7qFVocA582cuDtF5rHdCzus6e7Kxb6yq5+4b3yUOEZR058OFvBfh86g3xwBSvARedb/We+qNcDGjtnVUdOOLBY6P0IGjJHYB25u7mx+u8pEnB+OwUz4gCuxTBx4Pe+8oHRpGg6AUM/p/u9VHuANfNUKB5sxV1lI+iEgQvpMVl1YoY9CcElRwqsYAUUcUSkspE888nZkosTT+FC1OwM4DGyTofbU6/0VySeVMayQ2WC1ZFVx7cH3n+aJHd7xsfENDNICeLV17LRQ9vUTPFJSkZqNDup3t3G8+VuYVpk0yuUFdLfPlstWwIyT221s8185kHSzrqGgGyueWlvdczUP2FYEgUguEegKmgtkMlUwC67/WuuB1b60DeFGqEJTHUb8NebfhmgJ/G3ZUD0eP91NNWJTHF8k8u9n+MeImK+IAg4BfrUMzRnB4tyEZWlLUwiJMiGgQu2HMD00YfG6xv5H3DINM0EVSA/b+QO/DfGRZhWziRud44QmWDETj2HBgEOjuDz3YQM5f1E+QSxWbThs2G615/Tz5Nvj5XarcSb1kWrD652Cbo69IQXhKhX2mm500o7A8CaTQN/Ky5IskBTVhABgGy3NvOss8QItPYZ1pyiU0R4j4D9hJ5BSvfqiGD3gzicjlmSMNwwQIC/HL77QtlEUrMYzOBdQchh4K3QKwxnWOB3sOjpchtGRY35xSe3ZCQxwzQ+Ln6btBkKnSDRvOE6G+qlQPjI+y8YGt/AJX4C0NFHMNW/cn8tMjZMY9pgxGuH8IX8k82PRvtmt7jW4yrzP7oDzEL/l8uREVcx+T5R6VNKSui3gpt+prx/5ktaG7gTeUev9srKy7/an201S44Si3uhnZ/HPSSW5SHhGLPP2+h1ZPX+V8p5LBgk9l3K4bk++ksNLz57g3ePhVgxcxetjIX27IrV7G8SbPPFzPwPeccunFBTHXKlvm48u9JUwL3Xnza0zJwUJfj5ZJ9jFohpHmtc0/dYTCPTwbkY3WnDuGxrBZXNrq978MJvb+E5SwQxBti108LdoS2kuyDEaB+Dsu/oex/Jn1TdPGL8/hhumnsQEY+zjf5VcpriAsdNhza6DHzcCKK0unu5rPzVqamt+/1S3cOhkECTcv+S2DDWDRZimJRHPpnKufV9V6JGo8MuqeuNdWxd7+Y4r35xjhVag89PiIXEPcxfE2eqjgl+9N994nkcm/r35V/BKO+/f6iU2lPWYiMFIke7edFnm+ON+x/LncJDTShyv6GanHqCY9Fkayd3AabeOe1T1wkZQmXd8FVkSI5fquvIWkZLDtWQRBiATVgXKOvN7wv4mNq9m8Tb/GIHb/nb/0uIwIk0qLXzyzRDAwojtLenevUlSQ3a/W74SdukoH9cpq+Kv3YOA3468jsxlWACrWpWNcRAkT/3cwRbFlpQu1rs9ihBA932UnVGeYFPL7v7tfegR+MsDpi+czLHX2bAcDLSrYvVxOgUdYzrEuU6t9sb1LC8e8VUxCOK75fvJqiTarHsizsTr5J3Tv0dE7VIseM6fiDgvEGiKDs1RY2b1Tyt7UdBTS4PaDyUEhcqaGW2T1t6qT/rZ6uR4bTpzV+1S8VUqpv1yy1tEIko2fu+GNbUp9tax0rv8tUL6u/UCdzq09GMQ3fcd2xTmjxRv6zfosDL4H5T2EF+rPXscXequtTCq03vxopJrtfyXO9f46rpVb2i1ivk2j4GDkrghKJFO33ibuuXO6EMAz0JY+kxv88zVaOOquvLLy7fOVD48UezmMS7wO9AshDZGpnTM/AiDmgIkhNGpBxVBTdDc0zeXOHZTMP1Zdfeh23hSqJHbP4X5OyV8Xj5DV/3DI2Ffwmdc2vRpT9PveZ3y7j91Jd3HoqzkjMVpMl6ikR+fWOpk7WeMP4aP+r44qrhq9qPMF2HQ7+aw6iGZKFl+eYhunKsaRrXBcZM/ZQ7UZb/p+Xl9tdGtt2iS8Zrvk/OIjpqlG5f8VBqh022xHT18KiY9ErZK170hwMhWGkwI6bnO4MJ77Pn9ceewvjiiw7z6w+P7cMXrIj/uv9cQDl8/EDURlS3wxj85Pe96nlxg1Ywes5n2IdMTCjViR7Ke3tcvyImetFxpbD+vHDtM1wXWJNGSpCQ3hcFguqCWBkb93p+9vKwtLuxdIim1LxeH9/fMeGWYf9tG+8XPb4uUz6TM2ZXp12/uRmUyJEpu6sjHjxjJ7H09byh0jlPcgolV8fereqPZaqqJwdUe5KQvUsS41KB3clq4IvB6rGJUqmF/M4lp+JAy1325S9slXTLYcQiuCeLcaIR03rz4nLadGGbuER6bogBs/a0xtvcVNkno3k/9UnBHwi4ZaB0WbIVB9XuJZdTf/cWt+zpGEDIUAUWUCz4Zc+yrJycGVF2Tr5jANh0LGUVUpOF0HtiDkikBL83qrELiuM9oo1HsZu2JqtZmzbZgbAOqNrcpRk2f00X0JaFiy0aqlanhC8IRSRaDC+iCewMdQ2p6/RM80R08OL+16enGS3bJiP2hKj2j3/jLhDa6NXs350ydlfCb/G5c2+1GgRXkwfIhoL7E5MYhQA8udSMA+Z/qO4KweQkr5J68s7g/slvcT8FnQKbXswdafvqG/uh4X/ZHJbiVM8aQW82YmLmOBVB8sueHRx/Yli/wHE2pGtscahTBvQj7oIkHcCW8lvvKktgQv2ASfS/wUQ4Xaj6DpHrD6pP35ZQgMg/GjbY3UtnarOPPv35iNqzaohUECtWc3RI3JKzh8ri7hj3GoplFO4eA+GtfYs+xQdSnodj1vfrXN/p6EI1TV7OsI0yhevx89AwYiQbb2dyTHhhxe3vnFqndG7Y6iqgUe/WlrbHOCeCCKlpnqjqujfWURH3hqCH0+O8Lri1umUmKrGiLLwoH7ey5pC0ob4pIR8X9OAGKGebGokDRy2qfd7ot6lbCaqpYqSt4vL8jPN+xgwczoy2kgNtnrO2dO91fyPEBEIpXUDsgCt4Q9mudptcK3k7u8rueVTIRp0PeoR0/BMzkPpfiZXQYeger7KyGNZOon//keH+r5gCq9UNxwUyy2yuLKf3fipDgtDjNZg1GIZYRKNhriS6oLl/SVpDRDljUEHxCC3A9i3GLex+no9/QTDSqZIpVqUVkteplIBWwSEpIRR8iGzAb3VTA8fykhcGnygamRAKLQjf6CD0QS1BMHdYPFdBjwpUDrSHzjNtR3h4YzASw048BWmHD0WGm6eJO8jWTcgrajqoU+5rVbhz5NB810855C17tPj09PxPwjw9P5JONvAb9AAB12519LLgMIcQCQeD604x72eqGaq+KK+M0Swu1aKt0QuwOiXlX0JXzGdzwp3cIJXTIX+yzAGGoD1WUk7s/bmwgFOiMQpIJa3uCuO8SGO+bVfDAuxnddX4M8BA8b5l2/RTebZlCoKxueTMcbxgQfpaERQ1no1eJRN+95ejA/YdZDd6jMsFAlHwIZY8BnWfgonsTLYcQwE5rJ8Egxz5K/I454pzmRKhuoAoXCMeLZTy+e1Ny1NQm7mq+Of98g+0h4JSb9xiJuu9vLtOiaHAOCmOD6WAcVv3baI5r4nLojSPKuQ+W+8r91FgxOGLAzAks0Y8TRqPZ7RwbAkHnO3XJynz3jkmzDFs9JdQ7hoMrd0cXNsXnUrOs2KpPPjK5fFvnNGZDWuHbCMh7w2Nz9hLzd/n2BlC7lVi2Kp68mctDKXJ+5QhFukBmjKYU/D0zj9+O+2JdLKMJgdmJKegd5OBUvP6mjX/ZpOBvkV3iUxomnHbW2Lhr1k9leYESXC1r0LWx5Wjt7gIt9F9p/nTGZkiLGjt9Sn99djD4kZaNW0CacKCXGQ0veOMgJ8c4IEpjYf7sCbTdqILE5W6KgBqN/tUF9uaTG96pv7GcGlY5hVvRUz2Af7Iof69bWmmXAW1VN5vBtsCW/ylGydtX+RBQ+2DzyNZG9Qtq7GwyC1xgncJZwC8Z+bYCBZ2O4QWpR5ASWjbzV/SKhvQvFpxGut7Vl5LJOx3SjlV1ByVidyxhm1fU5ND7sX+Ll6bVcT+LDaJ0Sz7gWM82A4+AwhtUXrj1ClX32Z+/5Oclb8jS7+J7mYRE27oSm8V+dxrzonOHVQfMga/EZSbQCC7D3oSMgQfKT166OfmdjdHHfW9apE9Wc/ss6E93OQZznUz07rW8vGEZm1X7SkaYZ1zFwpxMakHB1pGrje8rrBLLvaU3WllPsYPplXK/X4CR+8qBJ1K9H55MrREW1kqP03c8FuyDhRirTGxMHwKA7AK74dnsvYt4Q7fSPrmIVZ/X8i0t/EXh28FQidbGYc27MgG61uVXqT99+X0EdHcu/hR8JWzuwWe42jW/gJ62vfD888P9cNmhhEcjDizszWehwFDszEBbBKhrHWYFvz2/W6S8tOUs8l1x4dMfzMUH9jbvdSNar0AQ4gEDYdw8NgT5Tp/L3LKdZTe1jfuyHdUcIsP1QMeEQ8FyhvrIEOYTr2bpuLcpWnPDrhX2C/fkOjXbqPX+uRN2jnUqfNa/zkRJugkMpyYYQTv1kfyUkD5VR1WH1+d36a+ksduSG3lH4xxwVB7JVA8gpIk4TE0NYWR51Yn3fnv50u/t/kl8QwtbCkKJyormPBYHwEIWZGP4zAJ7EWn8w2Op1f+DgjOPZ8L/4/g0jBJRsmWO2kRIjtLG5ixHyn0VSeZKaJv7zFFCa5ivsxlyU46UI9Tk2NwKkXPamPs+kqNfv/8/j8f783l/3p/3+/l6Pz6fDweKTfgjOEweipXal9Fx5r7OGSMW5lNf3a7HAWVhED1GXln8BC/nYOdTfwGuC3dCOEnjZYDfKqfFh9vD3RCi6QLpfAndNg8wKJHz3qnTYg6qFnBnGnV/wqSTA0xbIwX1BNWklPWheJKNox6k57+XfFg3szdFBRBU1bjBQM5h3cfBo2JzdbGizz6Nfj9oizUui/E/QT3Zizyu0u/yvZSx51I1+wu7u/tjdjrKSK5eQdwnbVwrKZ1BjAB+1HnOKqpZWrcZt5u6Z/JE0e7lI+bGbGQ9P4Gn+S8gRHpW7Olx909Rlpvfb6aiG/6LjiQGdeEIa6Jfvlffz69uTBoUPOF23iqKpLEOJ8sAa9eW6RU6yqgXTd+4U3z8cjwqAzEWKeyaDPD89ZWgDI6OKB1DDY8oxUC+HAqP5PjLBzWv22o/Q9Wt/5xArKxXq7dU8SmqLYvfRfcyCU71CXGUywn6H0gtVmtDWzVpfC+9irV9q3ISQzvpjNPQl4POfInBxR0bBqG4kjZmbKhVaOjih8Du5nAzuPYxZQA/t410wi821Mp+bsfjXvX8/CkegB5mk4DZ2jl6sV6aU65cLzPmnzihjQr92dzRjg4ZylC40PAhZnbSOeRRoiE0Fv/2mRtWcoMHJpGlFaDoU0viD7dnZNsH83+u//UO+lE4K87oxo7yzLArjyuf5dMPgTO4xdEy74u3nYMiY/8CIjGSuLnG5YPg+I8d76WMwhiWfEJBTAkHtZ3FybJcdSyv3OJwgkM9DEbc28k9fh805jj+0PYUAEMxHiBLtLJnV+nLmY9cXPFwncaoFrJj1vhOM/0vwHk2y32sEDmxG9e7otK/vsCtMiL+3w8axTJ13BAgpDIl4cCNG+ej3ATOqeNMmYikOEbFgxYUww+YPIi58Nb47vEUeWxehDZ83+3L8Dt9HszFcYIbTDyb/WV67JpUL6qfF5DSbhfxNPdP+NUM3MhMyg9NIQ9FpZgrqjK33k/DE8UYZFYapJ2fg03Cyn7DP88laX12XOBvoTdLsih1W+36BZZGz/8CnmVbVavceN/UeGcGqkdV8jZwMOziq9EzwkX+WDSs3jVuFjdWFkjbrWN+MfsTvxf6ZP3uysMjzqs9WH7F8acDKn8BbWbme7UaZX8B4Sa/v9mTC3+c31S+87XSsYUg1AICRhn342V7yARvBllm4/X5kSr1cAsqrZMHljwCXLQ0VZN+Df/sxEwDAgL6pJ+YzbfdUID4NYn7KjfanD4zWpCOJzxtSkjjM2hm+Lf5Tj9ZfuMW+6DBzbLIN+JS+0AEbmoNjU5AuU1m4d81yNYxxDPYm0sqh7JXj2u5YOkajiBzdUc2JWR33twhCsNZwyGhRAMWmhT/2Vkc/VwgLqJnNVVv8dhbB9QtihSr//OHjRa4V6UBvAF5MYEUraNBEFvLlJ/ihWV0iYDJPk5WedAWfYkbr77TLtv9nICNImpxbnD0qgmUHHzat4K0udMj9+LLHFcAu81UplgdWyIB1W/L43Q+pqUz0Yf25PVnE/Zta5ZLHKdP9J8/TJQAPjg+K//C1Q658x0AJmwYhkCsRm8taqW2uR4v5X063cyokGjFjVX2rQ3+PAnmLK058JrvVSGEqYe45o0G7U8EQthFQMrh+oDYozbt2ldpsgLrIEY0UfugMnhrtxAeq/tMtFbcfy2QWRMiUbzYj+e6ZR9GQZELw3cQO+xaRPPBXrFOlVmaPd8Kol0g/MARt4QN8zDk+Sn4JI3U1QHRzEYsRg9XeHAcS3V1ddQyGySEBYk1NWmjlSzKkj1oGDcUge9I0u//3Z9qq7QnfOWquD58E7dA/eo/CjEv8FR9waH78DUIwN+EdEiXmNht48P1x9Z1xnbIKFqugGBvfMisTWIr1sP9gS/5fdUGfVy0mCk97gtZEPiRG3b0iNoB4cgIpqQzKyH01UGM8OUqr96yL8BybCCDj12CxquHbOrrYOq+8yIMQRntAaHND8RU2URF3CrlkaOs+AVRyaQo263ljsVsh3cJHjfiLXhc9P/zAsl9i2DL9en2H/NZTLLQIb4vX9Mlk6HHBMSqoyMJSVNF967k3lJg2YDS9poB0IMRMKc3OvBPQsNtwp6j954huh3A3KCK6VdpbF9ubn1fbk86kEF20ADA9hBmodp2oQ4n8ayy7TJ4NGiM8vkZFBt89GFAqqj7jn9Lj+j9aD6o3zattmIYvGgVh1QW4avrxRH4NqO35ylZAvdSWTyz2CJHascSt6YWt0YG6EfSwwy6nzUECQFLD0AZBGfmFzElQ+WCs5PPBhK7xDcTUuKaEbTQyH95X+OjZX2q7ofTH4hq5J35OeSWJHHb6fb1xOa4O+Ra6fmpqCD2aCkz1DlVVF90PUIvCAaNHOQY+bNuePpylyqLB+7rSLfkVK9OGqPsba+2e/AcuUoiPJVORhP+lRTCegdwLHLRohjnrpOdETfJwxmFGwZVLv6/5Wf3M79bPQPRC5CW+IoOAmmk9/lo33FonbNzLiOfaqya41fD1HAjdvtQQ6ITel0GNcSQhoqLF+XOiXR9SDjgiXDJ9xkE8HqGWHmZONQOpHg56hYv2AgmvJ9fM+Cs5ssmZ0+/lJwZi4zejTuWU/1dXH3EL+xe4Mr2N9EEZfTXyW4o6NR5lMxc3+4YWktdx3NIWypIOHfAbV2s835gvEC1LU1h3wvWza9h/jTIhyj2nvuUUFw/a2t+xfmiV8F/zl4Qsf1dNrDWYfs+bufZAg/u+QSZjAXlNvcKgJtRszl1XzY/hryU07OAG/DV8qlAxRTz3fha2WIaKwK3XkiJ3fX3+Xby8+DZb+cQwrODDpfXR2Wk0n25qr6Wm1ymojl6fIy/2y90XB6k+FfClN5OPrT1snrtTcdAWrzb7TfponRE/uA1L1mBj/ThE25K1Pq6jIQsSXj5EC99L20lOuJO0OeqX0ZfTuXpQi90dpM4T7QYUXvXGoXHVT5Q8HIxfgUWBkvBZxTXo4Z9jBzWn2Sz5zPvWqZX3V395ZRBFx06RmpNBbIxNBTAx77pg6FQYvdY9kwA2jZRGavsk9DqV5KHmfnipLWnyAOZp672s/sl7oU4y660Oh8OO2nB4IwAFkvA+HBB+M3bBL0zFW9jN+LqZL0maoshnlE2SR3zvwn9ej68MLEhQ/M8zWwQDEFtBn0UUglCtA/UsWfbeVnsXFONunnaxXRoWa0oD8yDBOA8/JbtwLtFQz8Sg1eIpih7woX0NtIhC4GwWVqhCkW7+cxrgmevs3GEwnSqE+6Db5+TIeM6gjUUHXIUf3nAXV5RImkjmux7uYMTSN65dmdEWUXV7DUOChBArQ9p/XnV6PSsWeTtk1f/xdLbzP7jQkJ2WiTsMeg9zs37QzFv45zLQ5N9osqgGc323DDfLGz+GhLJfO6x2VMttxdzUa7ZHvdPttrlzv/eCP5BeVn87u0zI753HByCyz9Ni1Ch3fzGJ7hohWqWH31kkz59Qgvc/iFy50tImNZbU3uA18tjdFtf0+5jbBCcWIRY7K1LzH+leFf8GnD2SiJDlYOvxb1jzhjk9Dgl3c5hfqFW7lNPVFoquhmPcIJs+JOdMf38Bu+8hFzj+MzL8nFnT1WrzqZ5RDTH7dlyicYujNfa/9jyCEsNrHurKccm0u6gKlGFk1s3fVyuukjpET646E8p8IxakgWccAPXWJOXf2ujuO1WjyfDQ4GFjRm4BRjeeEXD610UN9auIPj50menvW/5bbrH7mst1NmvIqGU382Q7R7D/MnGb8tJQ3n2kikPsAiEtD+3NgxM4zyFP+kv7ZNk2DaHm+JB3RgtisnvL7d6/oM4LeKvC84gDmk8txWG9V9xeNzo9Dp2EtDi8j4QwNhAOgT2rTESblUE5dxV/SJeC9WbsrS9d71O54yJICO/VKC7bIO8pm3VTBN2C4er60KhMozkyI2EilBxpY7mnnsXyu6MZ42pgvkKaoX36iF9MGC5YuBOj/W4bWi8EYAf7L3drvdUSH8SSFi3aOCueqbA5jxoEyUe9iGkI6eKPIf8HZOUnzjwev1U1+MHs5H2GFB2Wu1ti3pykrzUs3pLfLMd4JRJ7QN73Pz4TgHmxaixXXahelZRrTGZwM7Nrzle+9oo9LcmDKunb0J3/r/CximvMvkAIHf2SAAjOTn7doKu1qezDyUN8mNONgJ4Vud/X0EchHkYxZigKwOE8mBo/bVtZvLUZ6XRnIijtWP63jhiUfJWHyCY/aMgXV1d2NrGZfy6bweY5Ubmc9tacHdNGplN5Ty3U5KmC/+Ww8XfPmrknPXl+smk/w+Jr65PCa1XfUvAH38VPbsaYdirvdV3LVuss+vXK6fBUm1s2Wm9PtkVbDNd3WaW1vklZJBN/hF58mqMUs1FucQTXvBayYN8qLPgah9zY6Rtn+0zkbt2/ijkL6Cv5C/gC+bAvbi2NgTyj+DsLQ7c3570BWslxnWJvcbzeEaTBf/PbQIItP61M9/aVKsKJq4NXHiba9Z+Fz9eoenrxhW2kXcNA+t+dPcvAG/SycItIOFElu+RlfHjmujWP+qljTUD9bGdWSKyt8gsICXEFwT9UXd1IjDj19OY3sqq8NeRKMEGhAYj+On2gl0i9nUQMwJ5+Td7nRZqaSsmXMfpphG9Df03scHNiO488jJaFIpLPgo6WFz4iJKquuM/HSVkrOi/PpBwVPP/nlZLxYqgXqAF4RJY8/bWzl/AccKxu9SO8zHG1x3XCUQaKIf5JZhkbVJ984VTHViWwR5IHpaWeFD4iFTj4odZ+Okp9IJzk9a/Ky0W4lq0yT9CnQ5mEYiNuMHToznjnO7g4j7pGiUC2Y0QFu6gNrgphGoUagzNIRb9BQxRNMWVbj6rgXGlpJN3aeiGwzC0DyWjICUhNTtQSTOA+K8GjvgVsl214EkEx3CH8T+786P5dbTUV3WOlzg3AGJ9tVuFA1xVdjMyYvbMGaAASd9TnLye4PDiHbpZqf0unZlMyUNl04AShz4GVhEd47yLVGh2bjMTeSj7SMOdOf0pNIeRfKQ/nymvI7tyP39rLDud//AvQOEoy8NJ5dG5KOWKiAYiXg2v9oexXRw7Gp+v2tyuLfbJZ7gCuh/9421tj0djcsdEH/BHRJyN+xUZc9FhCpVZUe6z6d+ubvUS+xWSAJkDb6F8iAy3Wk8rP0xjOa+LJ8bfAAHmDGawiFl/MjMvnVUXal2nmjuDJBNFOLc75ikmkJxiKCV37S9Aa/iJgsJ23aqfXVzBI3P11/VatSe/CQr+x2WWYI4NK81uWf3gPim9rvn85kTP5OtCI+A9I2xz94UbiJdwFn8Ef7ac7+X47+v68SIti15FP+89dQ+MWvqvsoowY8hW1jD4eS5pGOUYocV340hgbWSt6WVBD/3T0BW3x+905pyDBlSNAVuALcSCXfxrD+/XM42vaE7e0GOGTlqc2+xytErkYjbG4f460CytVS28tnCkQ3n+nryySanx22NdPrWCdgQh/gHSb3DnDqLP79frVx59LQHVc2enHg9JeFrXy6p6M4PG/avEmoy5EeUnbB43iU57F+WN/TYyr6lR7a0VqTbhnTgPC/3uhe82hG7TtKlUsHmCta/JO80X4fyPPnU+V743l/pOqFIz9I2sG6hwlpPIcPzhn7U2fGsoVPNxwLsTGY26IR4K8KF7C3okyM8AOYUfx614gQORY5k9Pwq+DGkc6/K6mOLjXpPpQFnrgrV/nRF56Gaan5ijEMROorJsCueHFRewIwuqM21NrUr2cqcJl7SoUHF+fiw3z8HJ853rY/XdB4gf5QfajIaLg1KuTQMzpPZHEvCG0hJr6d+VBBVKvvdy5kLK9c9rYEJCw7BYJJJNMTw6T0OUSzCWzK9EX7lScNMoTN8qNVDgRD3Asq+2Ox9Trh86nHNpSvG2Eh3Z4ovmXWxH9BXqqWU+xqjFb/KeQRdDwHx6WIPFaOJCcGRfl20wscBvp8O36aRXuV/gX8BwD/KwJ75y/Jwp/1LSrqkfUhqYGbdt9BdwWq1tejHySX5ekmp5cbmLJIHmIcAXXJIUaapNhUMfPfrjR3xZdEKU56ycC0eEdRfyyS9X6VlXdN/k/GjSHZmFdvc/0Hs3P7KmWQ1DCv9dm9mmTsD7BkSDZa84W0QgxAsZNsqyb6rfb2gh29X8UKeTf2ODBwozRb0UZkPi/HUb+NjSJFzkFBIBnsOq20De3ilePHk8qupu2atR7P1lFTygLqxZEI989mS3AwGxLC1Z6TmvZ5VZpVpQYVSiNjL//nbNakq2WS27x2Ij5bku9vr6rJCiLgd5tjrU5JedmPLQw9RrhrHKN53iw11hqb72Mudp5oG9+p816n8FDIzayt9X2MaaZJ+/v35vJpALf6aS5kkATsX/Eke6pS0PW3SgNk5/Njf0IZIpAOkilla59CXLgFRa2a0oYtKNT68m2LEKP7xuMWokdv2Lww3eI75GRmGRaJMN+7OEUjKR+8zOAdo4SPPQQ/h2saW3K0w+soqYgQ4zViITiO2JQr+1ngaCjqufJiqNAWtzOCXMsr7lv3nubI7qkLLyH+fmWGwoLZ7j6IwcFFJ3egMkgZc9DwdIQWLGakzJKiYSaiHKp0yA7J56pqR5RRKrRPHZFG+iLkvyzgRRnMNtmTOcp5TIaxpWHZKnAqXFkPnuV+U4LcOYK69KsXYoAsUAvqFCQ/Scv/+6VkXdJ0rUfZe6gDdWGotPahGYUDRnnqj1xk2B2bVm2RY9V+vcs2zd/EWBYOhB3vj2nJY3GWp6QWlIV4bP8En6Gr8KmR+rTpwcH6DeNOR8y6gyLeU+4Qv7Z2B5kD+fILKUIDB71hXMubJwhrXBbdixRWdACeZwB6fwjUCv30gVVV7U6RQIPETAh3BO3hzs2qkswi0JjnoBPFwikynYEMwZ+GczG8wGSSt0uZn2RevMFs0pZGDPfK6ch/P57kpRPWd5GAcTfi71x9lHv27c/6pzQQ8sjsF9TaYY+1B4wKAfL4/fkSr5WLggINyIB7nU6hTi6i0/Kx/3xptMsAE+BMa2ulnvtcvK6ounUaZ6PudHFzflHBO7/clkRUksD+h73svm1Jod8PAK3E4m4nEEiQeTgOAveO1j+CERr8pgQt5OnNsJC974c+K7PApZdDBgwBGXBOCB8eNxxBwZhj9jwHe1FLU3dGc5T81LsxU/0ex9Y/1WW/ayypLM24b4Vb4pOX0C9gyATjtBfXd98PyFkP2QYo1WnqAsLWekV4PR6Uq8nn/Ca4Twqze2b9cnPNJMw1K/uuyjPxEkBZUAB0vdPwPMPixDOFkHP0UKPoqcvul18v3lhtVNZ8UV22EO573X5/+x8PLXLQD72vCZPvHSW9b6JgWLQPM9YcONFNXEsWh+/6wRTiF9CLAOlvnNM80FBOM8TVEaZw4gxOt3rmUV/fYfNkhBpaasVMUEuV5uonOynIEDCLQawepwJPS8DUpprIOG6MUNEr+00Zcz5+L7Z1NnyhJ+70ZHia5yJN4iY/5xlZ0koPQBDHBsn6gmw9pd7DNFXkOxVZM4U4zVyGtKw5Q8TsxYk02iy339Tja2XWm4omtKzJg/hPjBFr4NrzW9OBoQNtz7A7Y4NUzYaUcUyoCOGwqQ+X8iaMCxfwz64FamZNcJA8GREgQgisrgIJCdt7fQwZmxnCdiZrAN4d55tQ71aAEL6lVb8BvUMaVhiL3bppgA3mB/QjYo5idHxzRIu3Z7e2trLniQR7t9IxeP59bjD1ptV8+eZoqdvFs3MoC1vC4XFSQNAk4RsooW22WqcCNsqQTvsmBnqYuywljVFVCKpzQcRzQ2BjPc0lR3kh8bODnlXzicaN0omlGvawb/GZi19jJeHtX5XippkLS5wcQLneHnnegSDw67131L3Lau95S/ZiDflV9IdNPiDC673a1J9567u3ulymm3w85LI882d/zZh8//As7JUeZGtOUkFZwtPPA3XhCIOSvSRXDfrbdhrl9nNx+sHQ4Cujiv082SAjCJralwXHUQYwsUg7L+OiOtVHVMnnF6cD0pVRqtMvZRLwnz4LuBV+VF5sc+ZPuZVUwDSasdieDcjJ+jau48w8QfnVa70KoBUE8A5raHhNsnBu/MW3tfd8HwtHpdrhN/5ivmk7y45HF9NJ9vuh5Va9ZuMpDT5xmfOa17BvDPJoR98BeQ4PGnjCJ0TzjvyjmENJd2B3WMmE/83aunHqZkbgKLUOSVRvEJCQyM+B2qDTgBTmlPUFvc4MRxSv326m+zQP/W3HRfJJK6i9r6s9Ojnrxzq0NyhEO+TYtqvXg4WVSCVg4SCx6sPqCYurK9NY7QKsMVDyn1GrNv1Nt9IkwATAB7TGMPVrIg+8jw2JWmXSTKjw2hiX+eCCsh1YCNeSWXm9moHbEGR/+DMHd83xljXmCN/eZ8b9D2LriQky4Vx1MHiFleClMZWAdFW6Cc82+QoeIv/okHYnaC98QjUjz1Pz6fhP9YCf8JWPwLTM2WgdGiNHx+6JtX2UrNDtyaCpoKJy/w1ctapcFWyJvtIAdNefEPszIPI/Jm/CtkZ6rptB5K0MH+d89H7lpftbqqcHMGoGLxF2T+vC8O493Nme0nGzpXOvrgxJB/3M0vq4zhdGnmVNofYZwy1DTmfvoiPqvd682DZKk/glR0cJi6/2KvTJ2+3X//am2iM9bud9j6ON8aCPPbit790pP9aKKOxCNxSRpFPPq9OFp68HZEn34el0wmTgRHmTz4NT9aFKczYgCJGcLQGXx+f3yyd4P9cyvj2DVHwHXh1HdhZT9/z3w/Wq6W78lvkyeopBBU6kebFMueUyFicjn9H5Yf6zZlWwyjHiqUFOl6yWzkfzAQBMjOmndOqR5LImm+rHy3JGTg6e0NcKHVix/8c7hsyO0MSFVMe9ACWhkdvIG4pqpXVXZxqVdieicD5zK99/GymcsL86Fyh5UHV6eZxqF1vUFfSy5HIaYoQx/L55italIrSTvZ1WHvJeC3Teu1DDRyVPVMHAJXGuerqJMrOuXKzZ/+AqhNfdBDgXskvsNSeYaGwQIHWoVmjAAN1N7z+HG+o368s/L7m/f97z6ExBBnR0c7PAtc75ShPCh23hAEHdwb2Czcc6VlbOTyylV1ExGPs5/PpX8SQ79jBggmpb3y5pUvNZ5+1aSS6JM8Ts8ZP7unC6JCFnAbRM003ebSczFlLvl2N6W+kQwVoPqPvbw2+3z1NGzb9VawRlBHP+ps6vN2i9n+7HNPYq4iIjeWrpaBMQ8m6bmYB5+AQkFIFJnUup4cT1Oc+v3GWqR/wjYwKNAOIuLS9hfQOL5CvIDndHapDDjFc6+aOyms1EG7NPCNTKot7lohOeGTKIxoJHhUY0br1htEVZRMpCkbfLab1UJKk90KwxqYX6ZvzXRsLNftOsdMyjy8cXPsI0b7uRUU+zkLBKybz+we9EN8GOm6/TOIn56S72Ab2cynp6jKPpwmGub/2KZ/qK19Hy/wYaJOoDLlxDnvsc86uI/44AifKPXZejEdTKH+YUGZh+DeZYhhOZ9dRsaXqIs+GzIunLLRgxRlnpl3cWa71uyb8qjCvYLKPe/Qw1voW48oC7O3332QXLXDBnuN+5cdy5MPOk/Uv8fc7hNGUzd8gxwQkHQTBeMlIQ3bjj397nebkdlpx0oeh8PqfwDBrT92VEo6xkM7qqMH10oo8Tn4iccyMoQLbYLA/fpxjuWOJUWVxeaVxwkptT3ovnspUo/1nSRhCd1KJO7ZDoW7uv92Y7c3aCn8v1l5W4SUYSJBeaVXHwiZH5bcXo7XO3/qvbBMY0nvesJ0M0IiQTfBQ19Qj++NlYzlQfN73GLyQDIhcvCfvG7I8pBVP3bb1lWZyndJK0CFjOvTMjYZrpo3j+Fb/hjXHmgRuUj+4w9BufUPGouldY8WN/fBz7IrkEgAR+fm4kj/2N3rfCkwDkPOEGcWcAoujiMO8sZ+r/Z2FrOt7QYBo6lbwBJosN/VHEBbuxFW63IqnF9kZBu1psVGPyLkxjkZmuYroXntKSM0+OYY4ioXSMqAy5DPgBUA36GBYMOL2jdiVKWsMNgxoIB84i3ii+j+Lc6tqyNMi4snSktXuKo3iqBkjqRIorog+dsXqbz749t3WC4vgJK4RH6TCrj44NaFX6diGRcEs14RXxCY5QGnVHoVBW4BjPm/a0vZ8mvTGMo+7XgBezeyhdndPP7I+DfAOiFDwFrgnCFDouUqO/E5jG/CJLPsKxOwNaeoxiaEkMeqB1yaGval3ur8+mOSqe7i9W6+bvNr5EhSUp+HEO+dmx5nraXYtTVJ4B4luSdPoK+v1z7YjYXML2cuv9tafCCgxb6feu1TnT0qmkUc4Qc8YPq3kLoVi4Bfekxtx+c1RKrrX7k+Lvuw5/BrXKzX0q0zwdWYP5iUF8HP0+Ms6vWkLXUA7qPr4tTA3Jzhi/wKKPIo/GUwLpADAU2S8P762ffqawh901eu2ts3BqcM9GWcuXErcoZxXZ6a+G6V8vNC9T3IUqNK3m9v92VqYzq6NbL1vn0at0Oj8zE9g2Yg9kLt54kz57izPMC0c3bLTyeCPIuknKnmtgctMKIev10Jfa39ZViFw4RHgGCH4CbkMj1R5pWBpBJM4W76eTQwtAUME+GpVffVs5IGm5uUqVrv3F0x72DG23K+4wiUdGyo1L1AAk4bmvtHIEUBxz71CE3KSJLcH/IQpmSOYHQYGwGvYrkRTgkEt3z/UJxsrTgxri/V6sI6nKKX5h+0+nyJuX0s0Bo0MoxJatRrM1LxnNEPx0UPYmothr83wMbXZ9ZP+D8NN0BhZpFMCFvjJ+MfB/bYTDQDvZdpfAKAbZS4nhJ9uVlMdqkn7lZ0ooAcOdu76J/C3C7FG4h4MJHU6Qjmgom/JN/u4vC1XAFrExUBWbEMzHPRAOekXqVegXL1yGXTcpZ8PotozNtnHzCfTBbs5/MXdsVWvQGF5UcZmwBzpUG1A0XgVdP6EdvDgX5v2CqG4M/JjxvIXcy0Oa3LlLqcnZToz1JQ6fPGRZIUnxYXc99S5YZ3nPdfJ6kJksWL4GFL64OWc1ZeDtaJnnv+BxP63iwo5fC3WKk88LSSy2huZFibFm0SuRxN20fsnLH3JCneLqZF5GMoJg+j/+Gj+ETwupPfpoT3rxOX9osgYIjmbSYlZ981h6O7gyy3Qu1kJlMQqAhlAyY68NfbcQ54Kcf0rSoYaFjCOGQLduFlmnBuZ7U+7pf6LlFPRLFU75vI1AdCCkJ3gwBsCd5mCqvU/VfP9/Vm+6ks2n7XRpGnEHp98k1oR8VC9dvIzDNxOgrMThaBeaLX1pGkH670mvdcl2CKgrieLtlPLBZwyYyOchv0q0hrKxt2q9e95a7iGeROZA7HzuVvyvcdfEz4C4C+qa+/Ew3Pltebi/CRnuDkkzCf4NcEmuk+kQ1Mvh2WfYEX4K3hU7nVMR6IIuyUCCc//bnz3nFtLOIyUR85HnikRxpR/k2kXjIYhO2RhOoTudAcXpPZqgK4levUL1N58jZrGd9rzTa8JVkA7kAWf/DpnjsqMs57L2CFwUTNPy3rxQb3F/AgOEYMMb9Fnf+9U1LwsO4iwwRirmeA/AsA7p378yww7HhZPZFnLwFBX1xBNxxlPRpWlk1hIpiin/4IlCyp7+Zrb1SMP6QZgx6Ek9niWZe8eTYVu3OWUeIIMZM69sFsccyWXKWV1MuzVMmI1jATez+G+AT60aai0tcW74kcfD5meINNnAgx5TYOn5fnENskkgO2l56es/E7pRNA9qJj90AUxRA2wa3CeDYrbk4RoHec7Bx+v351kfIX8Ny27k5Ve87JvC9PjmrCQqx0ukbKAcg/fN5zgTSg5lePCVr3twg9fi3OgOU9R1Y4ujj42Ei0t6F9FJJFiFLfWh7EDI9SlmYe6jy3pdFDz4rXNzfTsOjAq9Rj9BFHrRa3L7f5TfBPX35WGrs6fyvnlbKIYEIDFUjIqmeObCbMpv9o4Rfr9KKfJGNx4/whlM/pB5c2FM/iBIl1fU68fWJ7c2h6IZKjaoMgxG1DpETX1lZcg53eCYwDydOKIWx0w/rwcO09zk+JrGXWBh5rwNil9yLEsGG0e6H6p7p1EnW5fjaQdw7+MOtg6PmcgylNyS02GMKsMA4O9v1VYJF+sUumWXI9clj6YLs3zB1qdt94lhUZST9JRJt4GzC2xdAePW/jy2DqgLIOby2GzxYNN1rG13D2IaH2djDxxZRYiGDfPcrkDZnfTto3XTj2YCifKXTc4l6/4Pi7TXWSNh1YzCI2aTdva04CR/OfnU3hsBrlP8HRrs0clzAx1s4pUzIlXQyaiI7A6jFpxi2aX5+eaw3z8PL/E6bSklzaqOBUNxRrHfNzPfmM0V/AZZcTHRJ+gXCSalIKjyptUY1V9aAjf95UaqVxcWMse9tUTmB7QHEGA9n/EpYwAZ0tGPB96OWjmut3Zczv9TPblSv3tRybQosHEESlZkmJdEdS6+y7+VGrzy9dduSu4Y2CSF1yEOmMqlffkfBqITWKoioRUOSwcHbUpaSugYLwYi6wPwuc15/cAfgelNoZ+Rg3Vkk3ZiLyk7uxJWc8ursZXoB1kokP2S06OnPmmqagfecqn1LXk8eJVePZKUWc0525MzaFohWgFaKR9/bLHgvTk74JGK/aXeuNRCJeMYBvRTrRn+Hz+1zLMMpE4IW13d20ZbUU+jF17YsDJJ7L55Ghvk902+Vi3gVIdwE/EYWvhDtnxlQ/ni7DP/m2rgw5p/dEwTB/n6AR1t0aml+JgAiz02p3/7StZgcuwEzDe56QzCX18NdPp1I5KQgIpxlq+LpNtf3C6biVdK7LZJ52rAiuY0kjD4ZaP+GsNzYi45C3kioRxyQn7Bgee0+w9FsItpz38diBGnHTsc1jSOnZxA2tDhZJ12ccN39HS5t10CAgg83HJVN+IgD/JEzYPO9xLU9v1z1j1eh2vDYLoGhSBCJb6KorWpkaRVZH8D99cZkSRodGLmsPvfkmIL94QXVmLKpzAmScp0H2hcDg4h6qOtcVz8dSRY1noc4clN99VbTbg2PweOukdCXRXSFFxGLH/DxlpB1RePGYd+/cmFwdjsSBIRA4jnoRi1MR3N6yd6OfaMfIF/nrBSKlhyOnCh8tBJQLtver8y3T8GEAZkJLkzwhxhAeq9ZuCwCDPBOx/CEMH2KOs18R3BDuWNQtnCap+guwiwpTITbGu9+OxmHd9PhfTgQB+LW26BBmbjuuDcHGwi+Z13cRqhWCCUR2LpAi8lHtMT5SM+jEJXNtvT1LP3UfKhix3dEX/GhyCUcuAnubGKf33c9LWs5Ulbm9YirKZSP7s8u33ZAdScCNccbjb/TOnPJ+SNepl1Xq30E5U5DN7AIjsbLuNy7gV0FQlqNvx3z/OiUPWPWu6brxe6PzJR4iZtpF7YaPfS/e9f6p5ckF1Wt4AJGGzd+BGL+JYQXrvbiYL1V3Wurjh+M3hn1cfgjl4QCXOLJBkZR/yTZj5eq700YUuYv78pqX22ijWZSQzxHqy4wSi6z6E4MRXJgFcenN5RuqP6QwEZHQk/y/mQAWV2xo/eg4K2kKZV0U0ygGtzn76XOFv+S+xvDZjEk9/m8DM11ugE0K6KN5dBoJITc8EwD7frW6xON45rvan+/yAPqO8Z29SlS/24DjWa2YJDrsyx0/+YBUobuj4/lckj+fnD6IpXKP6rRzyGqbKwf7CXvaif7+zz6v1WnvhihOojNIHQaqgirtCZjdU/qNV+/ynIB3rqfihDRaU2KwYhhJxTkDab6gP955LrnU2Rm5asKgzoIG/4cazMfYRCX9n3Uisv6xvUsgs92GbXB50dcfG1eeLXv5G3K05gmFNhgmbWCL8Ot9ZhE24GZg5uDXLy+WPJkSzpna9ZWqa7SYC+g2GiD5QIv9GWSTl164VpDzUZmTMiZ4VgqK7MVbspG9ioE06UzL3ZQepXN6MsSvV65Y190EIDheuwNqVnTYJU6WldJI0OXex66SGVoPJBPS376oZzGLIYzrZgMFjoFhSQr5H+LPGL5xGz/FZe+N+k9Toz+QxYJi4udhYe8jU/dbSlinxwahjpSR2U/nq9hfYqVDb1EVpZ9CkJDVhCLcWIVHefP7ideIsSgBi7HEEPZ+yxyXydV4sQyjGqzed2VtFAYF3UGvR3/P63wDcDYtinH0L6ZNaoxQIUenrdML6i/TOUvkeRY3dlaQS2EC3lltNkDXu7FWtMn2fsvNqShlXIJD8LmPQR+MwE6Na9f5iziZ/Wu8csuUoftnuOTVEvnHN/S/OBnzG+y3rOU/+1EQO3KC21OmJfQncGZ7YixyGOrXpoUXtpsFewJM4AKfOHqVDel9ZsNNxg02JvLOoj5ZTCLBkF25JfbJEqDIhy0d8YzK6PPZhm4uGAf2cChED8+E57lrqgPb1ZKXVNpDMJVlp9eV/0XRcNEeDTNQ4RGj8sksmazIUSmgQRuuX05oL8zoXQqlRjXtuxHD+kx+RDGr6NR7Jmc9NnQK/W4mYK0nbdz3gpmi0UqgL9LSyOs7EDAqxJk3SlggYyBpHGCgWVzq/12qItYv49lXXOI9dIwW5W5zi1BuoJMqEzjIzEKWCwVO3ryReY1VcsjWXtGCnttrtJH+6EUZOrtnZluQDD0sQbIP3f8Cjsver3za9/UvYMrtQKbcrnU8omajX0lGDxcdTYMBoBSB2sXbRKvo1sxrZcqrD2HTlUZeekAASZuFN+ZXY8c/pRjYGk3/58wcq6H+/2GnbFgxwSPY0/z926RbbVYGXJVElVqkXHTHdtvjqEc2N5y+POtNscLnDW6dpD2YOQr5bq90MqpTsZ6Fa4agQ4J36Is6JLAqD5Lltpdg/3S7RMGAs9qZxf+KeMDf9M9LnwvET//Wu9kau4TlpbI25/v2+sT/nUARaSQUypcwvDj1Ea4VFHEWAtFUWkDAD1UScrfmTcgJVwmbA9mrmAMkjblo6fbE9xmreoU6qppMELCgI4Ejh0Fn5s/dScLqMsh+7Klhsb+AW67bLuPlxxmCvYbg//+7Hn546ftDJ906rxObqoog1KHaU+ojUuozN/X/ZNS5lYO39vPQeMNdMAjt8WhMyow4UFu1PL5PjB7eLLaPOGCcMuAk/u7zpvJnrSd9zyfP3i/VdgQ97YKtSc8pGUZ9O/VicVA8XVKsaH5JjUhmWRItz/zcjIoG773HtfNqkPf/AhB88YDeWwzAuOPmmDSKAspFDcXZk17HwovgBObgoXrYo2Mjcc7HoxHNVICGnkZRsfSXp0XX4BEnbLWx/Mxs7QXcAWIHFTJo15eRaCBVb0FgEZ/50qHZ3ilXiWUuQL7/wNRx5NEcaJCFGc7Nwf1MTE5ueI4h8wXAIucHyAGM9fjUa62nEZhqgiNGMvyFxmeyf48WxIKzTlYXz8+tsnl6TIw7RELLI/B+aMlInfWV3qBRHJXmBHrQ9yPmFKzlurQ3qPNWCYB4yPsHU9ukYVfs5amgsOJMnAT3N76/pVMqYO5DBD1wwFn6nbzXdeu9yHBy+i//G3GwvYKssRX9c4Q0V2S7SiL6lWn1d7cfCtwV5Rwn39VffpxffxLKKe6cHmVtiGCEjXziS8rU+296aOnGuwCmjDDzcZZKi7dlXl5QwD2SHxg2G3/xQCzy6FTQvO/vXzXxco8DUemSCV1EBNXSUixC7IX2VILPHXga0pyXDoGwB6L7OQYGcd+rCoeerCq4VfWLD45rS4rYqBxtqD88MPxod1kBSetsZKIsOw0v34EFqV8Y+pFzoc7IyP3zUCgbF+2v6tsR3gDgxK3w9PjgG5O7MZ+wfobH914Bq+RqZy5IhjsqRdcxKEUFdwevLC0vez80qlt+o/155dfM0O0Isfz3FQj1GA4mJWVWjRaXP3SOafKtp1s1+ZhbQ4BSY6eGxUeRxEYoe2vewXfhVtkHf/S5MzAxh9mi2EaHGkOFlEK9WpGIJHnW9ClCGUD45Vm4m3pds1g985e20NFhNU5agVkGJZPwJqAZiWljW9Kk4HsBWQftvZDsGxKtahuGcyGmU7ByIzmy8F4lNtBidXGFg55Pin+PBps1NL4QkUyRPAsS5ZlVIWqzE9UjBylq3w029ZbyUx7GHNdC+YHq55OHE4MHbE/dEDomJRGKcTcVgG8mbR77PP7nuN7eORMlAzhZ4lN9uwmETkMcrd4T7EdbalxXkpR5uLnBEOdBUYKAU5CLKS8xaTyiq6o4KoCExWuBe9X/zGbmVn+IEPl9RiCdDHWD9EH+MJJG00vqSt+kMbGCicrcQXR0MwKtbtqWs9YVE1a3wgHgonYSgx8awn0RnI7fb0bQG2o5EjJiudJGss2Dt+dkVcc5dIzXn/fJqgshWTu7HYvR5rLdhO6SC95SJzTNcf2bvdx4dXakllISgaMO3G7gFAiVSKfkY4CHo5XOpLNOL7x5WoRZgpSjrg6oL9zioW3ef7zmJleAz2A+fISHsauJ+uIZqHMij/jyM7ThLOixelGi4W57CFbND/TwWYrjcq/GJvlkPj9SuqSZTSYQrIq9LrozX3deGIw4G6TygVJ3f6RXGwxePRq648W5bvxV6kPWNOHDQGd0x0cwnNST8PrRft4AwdEyVXXBKfruoHfm40c8Br9MMdaOWN4rg8rRG1GGErfPzbxXeXVjxtmOiBC2nr2/SfC6Yb+kN59M4lBHrEbTIci3+yOXy98ZGL0sjLkQACIbXAdGKCvmxTB82ZkpLKJBHllhzBVfTFB+4I3XlhZDqwl8rZb+VCvquolasVWMVLb0Q2KoEuU+/efSN+3nys5dup/qdU10UdTRS3T5282PsUFGskWyJpxYnwiTp+Vy+IG2XfOJl0lKBl7UDGDofqyonTvQ0bGJOE3eLndVl1u2Cf3k+hpeWdJlsOGMI5ztPQMFGNL0+ryNsrg3DatICyHp+RMpfi9ngeRTAtqR9HeWpJCFID+ZT5lSuUujAq9879ymOyY/+dk+q9OcT/XEixQaigWz3MTkKmuaahqiQ0/D5759Vq2d3GZkO6A/2fSNPqYpvsIkkbZ0rO/nVybyrUhZclGZ5UGQHr/PgJC/gBqHB/ph1/YZXrVE+fbox8fOlGuhnPk5RN+f8JLL96hZwls27yNKLt5bN/XJ+Xnvq7n6Ru/th3Eyhh3yxQBTqGAUtm4BK1c/8G5GDXrKOYOr9PlkAZ3hJc8h2mRyZ3yt8fjm1GmPygVxie+rbzDy711MVdw0VQQ+vYCqZTdRXiAlmf3n1bcAZTJR+h/p4VEoQioVxTWf1L9VVjTYderotGZLl4q2fLVeUjW9tZQPa4yf4FGv7jWB+pVHCXfxJVHGHbc7aBtjY5SPCW9u7rg7R5IMOmsApPvM8EnAliRfYlhfk9ddgPRDknHzxgoSiHL2RTbvNTDFyvyq2O+cbyowljdTnFrLAVTpw+RhYHIf+tPgwxrGNJ3veNbeOGgCso0OYkKhrlmwCHC1pD25ioENx1Bw40+r9yxw+1QDF6nfTJBG+pwWgOWHoC89GrEZJC296eQY557EYlW34TuoCJVh6f5MTBWniguu10Qr5FARhI7RZnNnXbqg0zUMuzQFD6A9DWdGZnr/spCtBzP4eSHMk2Sfdo75qfJLW/wFz59uWUkZcH22p5gUDWtWhFp5RzxTz4OycQjgFBKCXm/n2bqmjlBVPtasLY2by6uXhjIpJhUFNgpvf49tHlNU29BS194+EU1Mb156xG+i4/7atzPcoQGP6FgweXAQUNUx+9aAHQRwZifVqhujNbKzmVbvfp78ugQCgeFsOYomcFD8gDi462i7NUY6scIA/Ft9HjRhxx3qj5RhCf6uMPeif5N/Kn8n7eFMpXkAErx/GINcvIdfvj+w5mRsF3DefxvpBGBsi2ct/GeEUjsqwMkmVANy6s0VzWLh1cR0DFm8lJYr7PLd9uK+WXpT6UV/rNao4t2svqJC9e2KtLa/AAjlUCLydNhr1Er40/nc/9OcZlUVS1Nie6i4/PG5cS1+5vFEuAUdGDm2UtJ3WzzsptFDP3hwSlYciefna5/c45Cvedg8OJGGnONZzQyqi7khJ3jI4Lp37QmVxHEsb+AG3gNLdyag7L741IH49ASARJD9zrXhZ2Y736qIUl+cV3wljyE9/fskxfVCWE9vGaanwg+KJCaOQhkRApq68YL/CTvSJGQ4q5AQZvbT4SY17EuVs50zQXtVv/8CFEJsvue1hPDdlo+MYVwHKCpla2+zNwrtp7Pljcf9QBBx2uIR9tH6Qe+rjhZH/8UjYC3TUOF29zFKTtLAwV+AGc3jvXirpKKTonKQp1/f0wHIn3XyryyYCk8n8BkA+xO+Dfb+C9AdhiFmcy3quMCwmS6AftFn/ZwtNvq5iVpVShw0ZSyZSA72l6CYgHMoz9Q7cJtCn5eTE8pDklrCwUXjpO+K1PNKqWgQBL2hHsYL+qh8XZ3ekjp+go8QHdksRlRjJrTOZmObIT51iWXf6lFrymEmJvaM/taaC7CTtbMCEQDvoGVKELNit36rKBGUWkKyvvZP2kcPfGHwLN92uT92N2FdnF9lnOyWw3DGFxVylOQvpNvcp4MvoRFbO6t/fDKtL3nqKFZNJ3TVfgFWoE2ga6C1wW6TkV9SBl7smXalYaQYP7cPse7XG6A7Zwxa1aV+CyhdonEYMvQqYvRGRGg+xWeAjJtfnm/jO8/SKqW+2IsxmE7QJYKgbvPNB4/VzYdz3rv7doUEfBnytumO6rwEuIhiGKx+R9Q6eqMoEUqI0gC1jz3brMwHLzIv1seYKCyaJgWMjdRBnKmShpISG93YolQYWO2TcZzbm7ufRve+d/lIhrzMYCn34EeobuEHPhGqkf3H9ariiW8L8ufucL+55mXOcHhMfBvjbG3rqBPuztAJt2KmzqST2eSTjJHInXppLHB2XB/CXmNTGl3L6IvnQK5j5w7ZGCpkJTgqiMak1L3NsjOvtvPLDKkr98oL/YDTsKzxJ9EQo7wWJN6TdJpw1q2kqMHvZCmzl7jwJ281vhX0ifWQc2YSVTI4mACCI17U36c2Qu1c67Df4on7quAVBaH2dqGpeqvxiw9TLlWpkSkcaBzlpktgdlv//Hte13oRmxss2/bQbw0riU+fc3OHN+6ye8tXnnxU/13xpJyz9gT4RpzeWQWqDEMIN6X+Hh/EjDFPsQl4g1YL9BM7y/rzo6w4MDFfRP2y5xvPQnLG/eXItLBGHDGDiRC+a8zaM22IrJXhBkGxAkzyFrj3zvmnSRxyUcqmPtRek1r0vuDgr1Qt28/+LNJxcop4ETAHhHTISQw5bvOdvnXpm9nQCvxhuBZ8xA4WlBihjXp+gOt7YNbDt1Fy0WSboBIRzHKumTIJXTOANRn0Sj+rTW0P0lidQIAZXKYi4xSGlZNhrEGxngGdzrlJyYskGasR8zL18lKUF0oN5AiXkM0wGIJWiJv7F4aCZ/fu3n7Y5Qw9y2II4AM4EtHrhAFeoejaFMnnYwNVbGgShWdBWak5f7JHki0vInXfBAjZz+uHZreIPYp9kK5nFCFCUqSepcH/RPYDDzSzgPI9kFECYoRbcUIxZK2oKIeO5kKd6oz4VCbEYz3TC+pEgDmJh4p6d5RaTn0j6vAp5zIEzLV7BcSMQ3yvRp4XefzeWU8lSocRwrcDjwr/nJF7rH2fZGWqJZqwzoXWWhxk4GjXzl+uxgAaT2/yAbTYkeN8bpULSsY3rCMyLhLhnC750GqAfymT1DMSwOlW6H5rJqTKxqmdsHlqSubE5llPAbzP8Pzghp52+WuTbxm+60/l0DXp7Jms/+SToQye3S11XiSghLoip6/fv7wEu1Kqj/Lsvu3fzYk4HviIR6pXi5Mjeiyzb10k9tfHxjtzCmwCZ7wVDPfkkxWQxJYdWRymGMssdon13vr4ekP7Xd/D3LaH3klPWz8JUGytlb868TgW5ENXO3dQjuJDsX/06ovlz5F3+L6NI+29Rm4b8B/ZH+RwELEc0OPjtd9ma56vXJsvTLP0fOu/ZJLmWjdWX7uV9F8UN5KTLX1t6oHtQk2wRnbBvMXdZo+kitd+AU1JpseOF/srtEYpGgK4aKH8sS0ktRW83perb2tQQyjNtwu74l77XjWvNJxjsy8LYwuASlYz/IG0crySXerk6apI3VsvlbU7SUbP24FZPc87GGwI851/BZ8/0kDoxgcHI0XGXwAvvGqeGAgscnisOl1gln3ttvzPR2fcDpM3lf6Ig/4CHhAL7vqizxkqx+sk7NN1nt2Wc4N7SVxiP5dQOOn6+CzugS291LgfiaoxPk7RBvhx18Alo/A9YAmV6KTDgS7cKnW2clv08eyg+SzN9NKxV+/LXJi4ftbpD+KgHqKiRkp3RY9/78c3/b/eAmKW30EVM7m5Ypabh4KvQ09HmThkCCvE+RXbPT4h9rr5QkGXEKpaVnZDUWeNg3Fs5Lix8Tiu4JfYJanEyVZtdw1XJYF0PLch45SA2Wp2uevzX4c2ehS/j86ZIBw8UQ1k7n+4PdGfWNaLBGY/MX5eUDLDHIuaUZ/Qk5wED0TcNiinPZSKuqQeo8PgSNS3OBKPdC+tUf2mf6bB/MzYmS/qMsdVo8cC6hHovWszaX/iGtbQBVvXUzcv9Fx5PZPKwduSwnpu3YGhRJzKi18+QPuc7Ht2meKzU395mXev9nomrh3fKvghSpvhzck1f2/gOzsj9rdTz2VlVqP8vQtVT0bqAM5AwnMIE0uFwMUF7H/0FMvB3xoHUxrd6mgIGHRna+Gx6M0HyhPlyvZ3Pu6c3XvxMGk3SIwKgUAzf9Y6phJ/Ihy4DfrYA2tolR7fy0TwirVnouhDvlYuCKTPVG2ThlhRYwrDYb5UBUUcWfzlCBPdt86xPHb11M/zschxga52lQ4YKpK63cEEDORysR2MgeySRSI5gKZBJrKvfjs7+Oh8nJskl2YglluNvO9LW0sMK70udEpLq6CZ1tUsTXYUxyJhZXg9WRv7FUdj5eNZLTjIHjYYutPnsA19KVrG9/x2bTc0AuSzoERw+20Abpc5PR4a+blHorPtuhuyg+Z5HbM6AA0orr+c9YzgRafpdjT3SZI5xsWbPFpLT36QnTA6BYCLs6GYnD7xn8tmXnytKTZ0FoAHsAMb3OzD0VCmqi+++qhxkJrjvLVbApjIecKhttiC67izE9IRFzWlGhw5PEAOAGU6c1glyx8ncU+T3TQdkAz+n7Scgv+EAwAymER+NeKXgDqx/Q0cof/eCPNtuf3jT99VnCakj1ThWfllNWxYlM+uPrgdy/WoN97pEtzVyKRBMpmCtCCx+ByjabmLmbneO98CX9o9M5Q92kBKBdnKdJiDT1IpOSRtGlCs47MKMHRp0gzIlgYv4e2TEz4F0gaHu5jCZaohg+GcBvLvdCJKLgKYuy8OZApf360+avoLuP7/u3vZ6eVm5EatcsjR0jPyZv+Mvvjho1FfpZrqJ34Xfk1bljyZBpTQaZLiKv+qofCJ6ykZtk+svybyng8Rz79i7yve6GN+dyxodOjdrEXXy8uN6n6S5d+ia6XRNMS7Nbldum3FtEq+VlstlK3JHln/C/ixaPxf+GENm+xGCqIVDXxUurViyiMpPgEQM5keQJfs6u82cs1HJg3+BSQNrC8/MA584Bz3NKiyhIuXy1Y1QKB4e3uVHDzgOj58UzX0uaGyG2GdsneAo1V4XAj7XgIV0sUQmNm6CU/DBw1+Zg2KIzpQjJDNbPvwptKP9eeu6hTfXY+kLpKTkgaIwX6gCvt1896c21S8FmcEsl0z+0tOm2J0XXIL+S9AI3AFxJ7/kWrd2luqLRlhcz4WwXDcQrAhtPCtbWkjD7i7tgNH3/8oOhN/Jvw/jo9hrtyKbEybRMgRNsyRb85y5iiSnOU2932Vopkrcswkdzlz30RmlBVyH2NjbiEkR79+/8Ln83i93s/n4/F+fD6M0asK6VhyILBp2bhFfNiZgfrzLSUt9GcoJgASjCh759TnZQ3e6r20ziLQg0L7gPy6b56k3R5yfcLgeoGgKR+x203yHo6JSC3djquhQH+GBYKPzjiR/W76PgV+A9yxeghIhHHUXugYyKFzCSDWmIHSQoFKjfROg8sa7hqQDOri/xxS4ewFsHOlvIFjM1lkoPd2zH4knxLiw+orziu30oZ8JbXBBlvwqkVuLvSXKQogANUZX3P369ErUT0POJ7Q2xVQTRm0tfvDrFoUPOykVnNSmDfWNyoTcPowOPZG3eRnaOaC3n06Qe3e2VYqcoABenypYA6rkot1jFYFGODpMyAad0IjUeUK1sWMJcsQZeOGmpqm2tG3elJXNEWxVxH3QBgwOS2EuFw3HFL0w9txtMIhKWXoeibb5bzCuCGeyCUs8px7FFGxZWPT3BBYN/o22pZcPxHk9YHx3V8Atw8H7XGKD4BBdojjN9CkcTQz4JKHXbhaa9LMc1fjliGNL+8RsEakSJg4vtKZv+C7NqckdrMuKqr8gTH8DeeF5b70xw7xV75Ns2ewdSTGzujBg2AIAaaWu+6fr/bgp78Wdoyh277XSdqcNh9P5uV+pPtEE4BBNmDWu859A4cPnAcSL6k6jwkKhXdXTXDXpfUYayjRDVAEFWNhF1sSb0vA45Ae1DR5fZL6s9TRpjtWMCPjHN0PBhlvpExKfW8EKQ7NflVw0adG9O3GYH6RAIEUnH8pmN8FFCur6WUsIgegxIxOpujycc5VLTa8uOfYzxbxPX1C1W9blWoOvmZL3YQfHJL8hsNcRW5oG9E8oO+YWRD3mKJeMxM5J97CoIFqQQMoP4OHdhrI2pbXCMYXwLeHalgWtV9bt2RFp6j9aDoi0PcYG8GManNK8TWadxxKqwB79wjVGAPVtjaNgW8RPYpSJQM/6Ouxwy1IQRAglOxvK8ykclH49fera2z0WmxYjKzesMovABiDOTgsfspr/1h8UKgABQAy8I6KI0jg8F7cKHuiRliKLjAd26UUAnUcHYWBL3OxfoFrN9OlcFz6V2QKw5xImjiCYPpf6gvb7VTTyP1SwNZxNKgJuS6vwvtV3XlV1m8MansAkZVluoRHUK7kZEWMSBZ+EAZJoUBNqs0ku6UcNvprGlJtBnGxIRvDfk0125w+Yeafez8KvAuXUMU8uYSS26cb20OHCkdjfr7wLwzloHdE8yCA1aMozm+Xx7/7h1XqHEhX/NB6GeOr9qoVcUlESce3+YaoAp4FTP/EYFGi7EpnbvGs26XYEdUQmavMIg7q6pohUiGf8H35psPuNd83KyvIWj7f75bfsq7fVQkx5VfVTwJ98ckaAuP211561m8YlhslgUluYs3H/01wxyAAVXCLmfaWVTYu9CUwr4GaxNL1V/q/urbawlCKV4d0as/3j1zZ5YSZZIfyvuIBan5GpoHfcTwVy1ewLUswYPEzI+c86nRZ3wu0PJP+UMSsTyjVH/m+k9HwQ9KDfZPOvcxxsSeYTxavpKMFuWiBIbf0Nn2/r+XMv/AsttZbk9S/yQrr1TF8A3r6qVR7Nl5tfyNxoz7X72nB0/EUzVpQjLM9bLKyK/bEJG+miYdNPla2nfuBaaKhdvoliSfZUofKKhk/OpM82O0Nm3UK3mk3Lbt4vIikuw0CSNCSZoMKe8t9WR7qLBkm3Deog920d7KngFByRDgViM/6sKhX+RcwsvzM68nC5o7MXInOo3aCSDwd1b+8IZlfq8j9T2DK+Jsg3kdygJn+R0Mi8x7+prOHA2r7WLyFp5Eb+ulD8Hhz5eLTra1pFxXnvsSCklz/ROPBSFeH4RBQzDeR0MsSQkeuy0lYuIP6jstx1plqlMrU7zhv6Yn4q7ES40yBrLZnZM6hPbIr0l41YMM6B2io8eLiOHQo4CbgYkbiJceTj1NSpNVuGgK2ZmuxRsi2/rVq4ZZHmFybUBkzK3nlx6f0veuN4uZuNiRfwD5RjyBktCSLZh5AXpI5vSSl99U7BL6YFf7xXWYPQG4udWGFHEi2siqcytMwaGxwSrrzdLDP5gmSJJSAOsnxv/y88uvyj6JL3ERU3bWcmz53nOM1vbWxvmvJD1YPuRoq/M683meMqjkcmdRhw17d72vcd6pIHXyGsY/tyWVLGkq2jVuzVe32bJhywVpIJa9sQ/lMe5Cg5Y0Z/FtHcL7O73T7nBuJHgECL/V2jDOuko0ewcuJ4gJqZI7s7dshZ6d3XSv603pFEzUxkesKuunfF9TSBFwhEe6Xfe4VjaheHzscM3epH+l9+vOHMFv2ttj+ivG8XCofLWqQgz9YXFKehT10pbFe2s0pcdQ8hjMzE28+/RdQsR+4JSKzzDa85JcSeqHPoeYg6dr01ANUcUXsiJmBT4/ODs5zIe/Ua1WVN41TIVi9f3vYsCXDVouFtWASmCL4ZiX9Or4omgUK5sioh+e65iU+e21xiDL+9L3C0uqKYXHGdOCbwMAyBuA3nvea/ZonLTs4PPamd92AkXI6AezfTQ4g72/8sUIu3pa1NsidWuS5mPBRhMpAOYqje1Fa4hNmdefVefJVAccVIg2ioRaVmri2GlKzbg6ZuV4PTjH2ikvtRv6DP4eKGVH3NJogG+b9efhfgOhM/oM41XzWCiE1P5zcKmIthgiRixsvjn6Bk+fpk9kWQtr5hB5thlHwr/uauGfYN1L0XFa7RteODzcSMWkjXCx2OrJ+JC/dpmoQ9rgoSJN5vpnx4wyWSX33QGAtf3HNaF55c5CaBoAVoC6BA4mw3ZK7B+DTtUE6VX21OKLgZsSJSEnYmFQvwMtkg7RHJJjI+q52/i7PTmh8RZcsDhOE+5M6Q0/2N0yZWJHh2OcdzOpF5/fXvh0UIXn6vqTrtJjpE0ZRIDsfpHpH8GepL/8Ns1ACQ1aRlOquyCzKSCY44UcQDzrSpJkQqXWK2h8FjJVozKvyhHj8IVNKa9e2FqpvvrIBx1i+6PvT7ndTVCa8nI8dtjUTD8frEREAdmF5tOS23VW5FnuMjo1q6GlpJnKj/ifIdCLnGYlxvKlsWne5b7DsL0CCeQRG33ZuZshOuZBiFPHceOW4oPJjuaiInIhoDzk11thEFdsRXJ3Vr7FgQGvTJt/yygueD6YU5q/d1txzo5v0GGahEUVO0YnLimJyFSag1AzCnLz/dRxwnxfnUlDHfSHqrozDjatbH3n0zRvilV1TU5hUafuR/2l09Fy/Kk83IEgphwYclkzHe3M/2S+s0XWFoFnkWvpDXWN9QFV6Oz9io7r+W7Lazh4jtBsmzUTDfIFqB7Rv+/l3Ivz00VFh4hq9/ZwwJK2ajNrfML82B4VzcNqeB2s82v+qDbsxLbK8zQKl0kS+BZxeX0td1HiW5JMeHWJGK4VhVQKBQFRd3Ia+T9wWO4dQBhnM/e3PAUWd7FCgcwEqQKd9jQFMdvIUpHRBg0D45vKrDq6poWg0HWEIa/zITjkAIjdfMfiHC+e6I+PDOYSnOmKOev6/jiRnblQhgxS1woLZ/YXzWnc3SF7WmLY3KbayqJ+cJx06IK8pkqIi4c+X2MjVAZL63O7BwalE+reqsnsxb8AxNfgwp38RRBO6Fs0e7stRliXlAQRUvN/YIarlsEqDcK78iH3KZvqBXLp5lzMzE2da7s9hLTXeeLYZ6F+A//h2bWXTYV+rZTI4qLXCdDs7/6WUluAFVY4Q8HvOLPIe3SzT0L0F6b4fAf4jFvye1I6ONgepTfvuMPxmkCubwIW0r9EcEZrSozcNs6phPwJCLCO8rIk3kr4/oGdyjNE/NvER7NxPx2EB6be/vx0JnymHpx1Ztk173ygBqOVvRstzgxCavljq/oORIcaOd3eGYU3/MQx+TQEJUPf0KcJd5oaeQw+ecldxjCMFzYf1xAtQYWDwmYbKSgDKs8HZ3T/115YSon9jVPS+DN/POwZJHVavRYc1ZO5cPq9zR8i63zm0lGeccnvkMaGJR5vLfMDZhxelfrX/nd6n9CfinY2b5Eh7SsYr4wYLHdjTW4aQz5rdtDlfnEPLdQfF5YSZF5/WvqISDqQdDWPnr7adKOYlKm+L3ZZMS99Lu2KBRDGrkXG72PDzk/ut43NJS/CLi9HWBVdkp2wjf2LeUIFNKP0NXPzg/lw9+hEvOOZWkeZjmADCRDUF8GuASHrMjsU7Zc8C2SW8WEATXWqHIMAfK3nLH9uhY2uljZ/kwnkIK+HyHwHNZr6/8Qr51d/K9kbUeOi6kUmd5t8i7w+A87N41/5T/tg9E5cxQIKimfs3D+zQoKOI36VqQ00eMX0fZXtlV8MCEN2f0uTSiZAns2v6V6TbdGiv48WhO1C/2JAd0vwqixoHmrsoooqtdq6bNEjER/8FXETTHQnS8HyZCfdHtwfoAIsfNZ7Rh8b6bfqE8ubAU3mlIq0H8VZ53anN2+qnwAkE5AKzlWCzPIvA9sDA42i9jdTfVA5yspGkPpWTh5myqE8a5PtgL0f8JTAUCZF3U/ziBOm2TwEhSOb/ZI8DCStB063E8sn8/t7edexis8I2fC+UdwxPgLwsAhp6PeyDvIpJQ9PBoF4H3cSNFAnwh2sOQVzMd5z1wP7i54wY/36VgGAH7DNZey32sBpyGotIX1iybWChgAty9r2RHoRZEAnH+J6qOeIvKN18fpu9GJYMTzMWXBuABAvP1eEltbibGfkuWZjnzabQZyJRCLMp2CgqprSyzeiyB09tNPjjhXJiP+XTnnwobRkBo299COx9FeTViplUgu/xbT9Nh+LQ7/8FhNJMduTzbC41/a98kcT50K3qS8qXVv+Qk9ufom3mTGhCA7RQGiAGe+D+YJcx87nHzTOhgaf8Pt8NHngW+DXveLCn9B10U3cfXOqEemoPfj9FuinQ6UEOM5sabgkoyJE5X1/s1z+2iUV+sBP5rpMHb3JZUa3UsWJBPulhtehc1XoG8IQn9eF2B/eLoMsVjWrvf+c+ahmYDDa32GWcJXZ6N3p+GYlpkY5e7GaMFi/RXA/lYTJ+KPJcqq/mvkxphV2RtlPs0kGWqBrDbYHb/wpOEOCj1ePWePTGalS6Mq/oyF3WMivkL0AhudXnfZsmCm0kq0kIXRMd4UxjXGSDujg4OkS3nPTZk/8JDxK56l6saygcvqE6S92uFwjgZMkXhXhV2FaRT/pScYvROsBUDC+xP/ReJ08Y8ZTjsNMcPh3Rw53AOQ0sB8ebTAKU/PAgu/aJu2i8y9td/RX4mzK+5Zd0rXQNOvJyZ9to5u3rKSNVV0fb7Q/rmD6TT9RWK15Sa1ll+XbjqU6/SJU6I7UjfwEh+obvb7ZzL52oXv8w42m2tXgf/hKa+uNwqF5UQGvPqxsq8miHx6axYTcqfqdkxr1icvC3VOCgCrAe98cpBp/R99vdUGfkoFLJxj2wOfEsXULArN0xaKi5hocJWnv68r1KfnyD9C1EBbU99krWU9apPqy2zIj820YmOgaKIAOeCaRu5WKhojakY/07YWlDWmvp52Fq2f0va1eIIRK51z6kKT2OPHH9rWuE+JWsNb4jPnLAfDrpubPYwWxYhtC1EMpRhDey0Er8ZhBgx5nVPwEfZ+obD8/v/AWgWku+PvMpsSS6alzz8FFIx7pNxDS46ysmOeq33Zsq3+XJ6A9MQ82Mgjk639XmrgRtBobdcL179Qi1TjCpGxO1bGzH+i0XNmX2QlWW9SE6ujDFi2/ePc3Ryq7wIMfQ0HvtppKXxHGN3xQmOnymI8s93w1JYwufJLFx1c72N6dsE8AQQirmYDEUm/UnOUm0KSfM85LeGLQzVU9fkS0ptV+P8T5fmrWEiP+WafrZEkdKtSAszdotYfrzTqJVbWND8Voh/cNKH9IKoyQuOvi4tpn9LwAX0rrjzWXHovSe5AW7MXjz+UdNdjooWVn8ffyGZeWVMfiPqmpFizdf8wzaj8yYHHF8dLkrFKFggf4QGr8BWZepGvLl1cvoSacBVit4DXFjLLltBgh1clnB/VIVMzIp2IFcqB27WZb2aenrjtQYf2NrkuVVC9uMY6xgp0l30Kdkg5t61dLhVp6okwoWZPpQs70ZYloR7kTdhiDI6JAtG/zlH7DGlvpXQ2lhmm0XNeUTzeHLuPzWyn1GO8BwSHnAnNKyRRXEQtqDxpOQwv8kw4atARfTJmTNhYRVAwX6q6XvGj1IO3x9LNhSPHQYJTHnLJRncSeNVyou0uTS+ud4Y5jUJdyEpW6209e0ezT2UiCYo0NrI1Z9Z9E28IOb0+i7NFdlpaRXLwJSJHlP71inAFSTv9bjwps/B4Q6bfkW9s+71UXzfeSQV/kFjpAjdISaBql9QNe2acELr6nlfUYjKCWhTqlNtcQPlm93HtdTb2gPc6LqJkDwo6+Ws7b0FcZGcWq8PeQ99fww0Cg/epISzK5ncX4Y1Xua+BHWYqKcJfB46gUKHUIF6C9i0Sg6At/IyRt0jT060i7ab1hhgARcmMx57dQlrmZPjpCPzOvQOrw52pGVwV6ZoqOJ8MpDvbCbz/5K77T3scKH/hYFDpwR7jIqnb3HqkPPFTKtxBsPqyFpj+4CcwIIRLBh/c9o+0ZDrkjTtBD4ISosde4Fq0CzZJc6pRmrmu8Vhs1TYf/GiTb0TUj/5rcpH0pZAIFqlioyGH8joDQE+XBrJr1n56uV5h1ih88Ug29yrohdb5NX+49oHdqs7tcx4SwiAaJ6sKNVFIisTLjaUmbz6T/zdCESGw853vyHLoDGgD8+KpehtGKhmYvQbKy24SCO6v8oXDgisiG15OXS7psEet3GkBzeTFEhd2+NT4Zguf5gMIeRrKJ4W+ZTHhbR1OLAnume8AZoHoEB52WiIaJ5N3xeTsvCvXzze5ekyOHGbs9HB10fK5HhxKjpqyJ7w49OqH8Bu/esch3RH2uRGVY+8JQ4KZ2QjbwO3ZFcl9S7SxeUqEbNUpqYWoeoQFrTUD9ntds9yzSN+m2LW8r2tb7pscxIYNzacaIhc+fokjvby6rv9Le2d3mbW/GIcy46exbhT22yGoQ7OOOf2T+qTMp70ZpIoMbigaLdcvK09TbUd2bvVF8t6uCztYm+JWMwFHwDLBz8//813rWIUUUfgZogfwG9ggMbj4ySWR+x2PFsobOgKX1Mw8Gg9G3VUOohE/4kZ0lTKGUuFEOJwfb56K0ttPQ6qpa8ZPBgEmoGlRrlndBKQFUSI0kTPMAZwEVacu9GDD70ULEgf0rUSl/pLRLIAJlSJ6D2x4R//7u53YvVnotnV3cs28U3D78zBZjGbhrxax44PgfVHn59OB30HO4tPnmmLzxF+wuotgtb2mF3/wvgajDt9N6M4BjbarTJxz9dhro8Ete4MfQpXrIXnqLMre1slhha91mxEr1hOy7TEHEr+HbfF4H35ayJTPyXsPQYul9EIlK96ef4Tv/+zLT4ISTrOzikOshHePo+UXCfbkhQsFksMXxhHuJe9bOrd4cj2CuYVvfR/VXx4g0vmy8pnBYD0y3EZU1Uy4ZN6GEtR87uragRRcE3Z5eHNbpkmGejpkxxmWo37HzvNw19UJEpqogzH9u8GQzDny/DFvb6s3oNzl+2EMVrtobv+jX9iav/Tqx8LJ6mfYgI2rQe+6m+Nrs1ilf30kGUOT0t7Ex7aPRExMKZ6HT1Zozmyk1qXXip9Ggg3eb1Z+NqNrnHnvVh8coSbN1HH6Lp0wAzsUHKQ3lnPrrjzesTASJSRoMCzvwhlzsld29y2UjjYrwOkIWW6Ch0ij8yUlmJmV2r329i9AUG4drcFpizR2Hf56KD/2LA4TDAmB6RB4ZPbn9kL91RBqZoPsY/zx1LxZwHD5TGNeSGpSFNtH3xHR+NEWQMbXI87EmyQcb1DVHl9ifJ8Gc7d0SRRNAo3IkXJzynym3sPddfBO3N9Oz7qamG4wqMwRr/TJ1Mv0M3f5sN/JKUaRlpjfPhXE6fPHsSFhR/m9dF6fVj/cWXSElD1zQ9VMt2mJnu3bTJwHFLjTY0G7tSIPWQsSMilMpxtuh0LZdKtwSkKzTHFoLxVCo9QkA9q1T9ix5DQYtqboZdH97Id4DWBBzPIV1hlHzuo/+Q4DWCJNQAkcJzt+UFEtf59Egr2LZv7MrhVdsLvRjfCdjN2vLjPrcFJCto4TEBkE6EgVMnca43J1gF/1kcu3yB3qzfgCAcfLbtO0BpkBBBDjEmVy2rkQOoZGyE+o6vpmhtvRZX+WzCc88in1IG+z9p+ub5D8yX32ePe+DAVB9N5MA687nIUbLd0428VfBpmfz7jU+0sSOoK0Lkk966hPPe3lc2A0JwrydIvAyI6IGJozg7n4iY8hvoOWl+qKd6C6o3qzlCA0DlNMi6u41Ojr+15X2TlNrPzDLbfhmmE3jyH063tJHBsBZK/PTV3K+2ZToDgCheuW6WtbG9UBr//FRP6W+7/oe3BHsN+F692pFSV+EpU2jQGZ2A54ca3/3y/sfHer2byRw9rp2HW+8yyKDLboTD5y/jjnCx9/JKsd0ncRa0MZl24wrDp8WzuYbu9o5t2W+GuWNSbgGUsGUKsXzkw6/3UgO6IJw3DOOXJvSfPUtb0ke7AGRZ38sizZjk/Vr0B6j+bI5FwZ7wzM8zA/UWpvshucbhHEzGgzqbewLcDz6lR/5Kvs6dsAYZapVJeupI/xfgWNnnYXuz0x/vEa2kbgayTRHBc0SuET8oWxrCiWCDpkuyJQ+Y8oNvBTsMLvj/6uXd2/899rFlTPHT917Z+pDCK9bz5jfeCJKyPvs9V40foRvEpT7EXEydCS+LitS7Mbb8k0MOj6B5fzuseo1lUTpwCn34Ju37HQfrKsHkrMLn5k04umjNVV0/0mNLsHfGnnp4TEPrr1XdO/tpYXExeInDL5Xye8oRZLphq9p1LeLqwguPbxtY+WbQyjqgh4gK3jrf6USM4eMty91h04V9xtMOyGdl0DremGgOJkpSy6IfkcZPCF4wzDl+l38n2augK/jqXVx6rGyHXgAgfaE4VPAZF7CMnZr0PNjjUBLhpYI9/zHofhmfvZi9vXmjOBNpcHz4wVuA8cg3li8NfS+P0OL92Nri1Rwkyy3hKv7LUMcLq4b6fFsJzhc72xmWATkuWUaEtFv9v28JAL/hwF6CV1qOfhdGSXZ0FpesHe7dzOJlSgWY+WGFpNCgrzh85KOHgd/VzJeG0sV67xaurclQg4ylf4aIOZo3p+haSWp58CMRG/5RDE8iwVG/HqoZ+g+1Gg5FV19XiFjSaEX5gOwUvnK/yqyTKaIwbte9bO8c3Raoqit6eniE0eKkhTA4BenQHbEAOf4CZDdGkcoqEePZaqGDNoaXB7USF624Y7VEsSMCe0g7TtB4B+/ny+DLJcUl/T+vK0i9DORK443lpbELYYVAgOhQ4QvX859fZsEuVlTdkKKmLN+tHLp6L2+wMm8mHk1HWPzsjIAfKWPFmj9kGVfc74g19pN/m5VX1ftEO2mO6EBnnn434dfhbet5lr4BYSXdf+KrRUQioZjk8B/l5xeN3qRJqeSNzDw/mz9CSh/FEKWxaNlLasIE/vT3p+pj9Usy7+Tvqm2biWHv6OMNlodHmAUFgWOUHKr/YoTgBNjxIcitEpKR/bTwglCVY4j6f0ChOC+vt/6Ig6or1z/fNS3efzWNuy6nIUlv7DcB8+kG406sjP1+/lkZv+/Uon+h3d7zOPZowGzbr+2p84CZfAeIX+i3wZMHX6ENuYNyTPqaYpx0r+LRzY9yEVRsyM4DM+oLc7W7IeOWKjusRYaP2fHmc5+9LBX3Ds/Ikz2pv4lCzIJAME9IVae7XhWs7eH6oVen7XMWocCfn3G7nyipA9CTcabUYrcHYsUJPJ8hGAO75dJnee153XU1FMbIVRooPWejWs5jyOdhpkKcDCUDRUdUoyPtV7mRbArTxOUcDz+8nGZZ0Y1H1tXQD9OfNgeuZcD8AIAeAciGnyFe/o1SQdGxoJAjQuxSNB2sXHzlQDSaVvw4IjPsEc+lxuiOvD7tiB74M+e1FhJ4a2M4NIimVeVpeeAN467lTFhmfEl9jwBtY7iFNUl3KFc61NR2GIYvf6/PUdK3vHW/ERsEmQULh4Dj8AqniK2R0rgLKzWqgRgmZ0pyqQAIJvw23+D5Xh9dirFRyIAaWmV3mNM01jfOXHMSSz6OqSkEp+n1ECbEuyLzPpR9Uk2J/ip0LWlASMt833HyL0Be18RH/ilfI2I28BeUhtuNNTbH06m54pvLL7EXt3+WRIjXQE8JVTqcAuciVAJ7pIlm+m90CzVuL3UBmKaCL+RjeddH/SAzorylEX0Aa14bxYc5/UB/eT4Wirkw1UMA4p/5GHv4TVwtbfUk0dlS6GqjfdeSb/lNlNBB1iVYHh6DUmNimXTtzj76KHw7IH9jl34Z8kM5OlgjDOeXXIaAC5P9cNzmCiVgHlbnjzPNQDV8u2NJmGOTgZNqpt6RDIdfTPcRZQZznreaOhBEutH2HMyjwwzEuXaqYoSRRQ8mKT8quxZlJ6S/bDbFDbI6OSdpBkgVmOrBqwc5QmlNyMmMCXuO8MyoDEinafMegoGX5MWpfpALmupavDIea3uxZU5ku4db8jr9LgY6JNyensZCmTASbK8Z8jHRozHfC3GOV6ZL0d9oG+3i3xeYUdmmNdzucnkRUgghdaU9KY0o4SV+RKqd9dz2Q2u3VE4ZIs8OD+S4UzTh4NPueLXIPIKiq95Tpx8/3mYqNfybjzWNlDiMrGow6U7Qhkmty4zkx3qBWQH2fNN9Xuyzw1O3CHmhzHH75qbXiglJmdppVPz7IN6dfoWF8abu6oUrvjeO7izcgbTZAGR7SKYzqRt/xpQZjgk+JFQzgmDX2XESIe/2ictZZJ4EQYJdf668y6U1p9xAIBDH8b7fsATQHnRiFA+bfN+W1e9o/9mJAEhB9vqmRiMFtiZw99J5aa1vpSZBgD1O79Hq6kXTvvUHSvPFhhKWc832FBHl8H+u0q0o1iuRXRfbuxDLxILQiCa51Tt/c3I9KhB5zc4pAKsG4UNpa5jQe+lKXtPyPtZkr23V1HVVx6qI8mzTm+G4HQFbfGfWH7RuZMf7Ny9zzqRKLwLDN62CMiucWPq33iNmdXz0hbMhWsoF9378Eip3Z0/vzC6yfaBfcc0qTWKypsnMSmq941NK4LYtVfiF4tDcI6V879C/ALd9b0HTqgaW2f+8BC7kXxGfM9IC5PeWl5emCTorXQ56U2s+HDy2WPp4r+6mO9FB7qiVe99+ItU9p+EoQTGwoe3xY8a2x55Wz8kHni2zsxx+hNJqhmKJNn/UA/9C/sgSbNNSW1IkrNTmWmN99yWed3xPmQc0rpGGcOw8xgP6G/eHWKfqZjKYBzl2B3oIcKzeqo5fvxbpgb/9rQ/eXNP3zr4BevoV6oP6FbYsGdtjUk3vwz3b+B/5wvcKUdpgV5wXaP7d2nXY92KD6SE0YOaluCA0pUMJ5+QK6VfAnuJ2E7FKs0DlKqt/824ACEgzhiHLi4NuSVMTHge/juVi7lkjovqDBdV8EGX6YnTpT0BIIXqspkZQGQXsin17VKYiIxXEdO1TwT1LgflL7lzM1KhLJ7AqzlD3gZOu0L3rtfM9yXDs1gKWHEDjw5x8LL2epoR5XDf8PXWMAjsr+FXy9rgRTM/r09Pt4Y/cIDl+8z8qYKVkJDCpeWkf6ego/QUwE3f+COc9teW7+xWWAaOmI9iDkQx7ulDHKj3IBblLrzkS+ZskcVsmEToh3b8OiF9lDokeSrPh0deI5JTCiWb10mK5aGhSVUV0fvsXtLV9/oCj+ulRaVLx66yeW7fewx5j1Xe+hFFmcOy/imbycgeYB5l7uayBPbMhJLWAjTjdzJnYTFscLlNSViUtlILvLC1hKbXn8kzIitlzFQmO2dZC9qh3NEPqbC5fjfF7r+ekBVaS5ZlQHhXfLuw+KRSv9mxW9cMfeN/6uTmR+CbIW6wxeeDEWsgOjZy6uO1jFWh9odTLL/UhU135/TWzp+OvXI7cYszvjr7FZV9V83Dxy+t5E8jBeYd9/+7au1lq+aOaKfxCb+MraVyb1NHLL1sJMlW5GleqAqu/FC1q0kDwFAX+F/Fiu+C/gOmcU+mLuVwirvX7X7J7RFSbj9FB/CABOoPUbsXaRRLbwwdEma4l5JZMg47tu4jfW46s2jey9Ok0H+PsgfiGtuWOzY2bPPFNlkIrvitt3N/vNbERxONSSZCj5+oP7WgZVjzzr+ydn2JcPt/rYd20Mim+YodhmnuPoAHArlfeP3hSaN1+SbWdGqPEAne86Z4e+/7Zcyl6CZdpv9T62AvexJKiz1f60DbME+iuHbs79HRSxtqzlNRUyx888E+1Fia6oGUTFXIUswDhRCPJqzDCSB+lL9qEnZ4qfKHK9AMIr+0m8xjb/SLlvmWn64aNBdG+4fN6DhUfR1rD1bykF1I0OLpDo/6s09Xz/AUogJMGVCizrukTeArWjZgu4qYxwkG2GLYBTWCn+nUFYdjgdTdB+ZnJQtDckRZg90jX1gmvidJRSMRP2XxJFkeYsYAlTjXevCUflOF1zEwyQNIpvqOdur4kxM7qBWahbzzSI9fUMPuxoUFeqD/CzGsjxS1Bygxctz4wCa4aoTpAjgdbxrGao3E76SRtDPmETFu72+y/z3ZJQICAIP+izf46WNPWNp779tLlNgdf7GSPl9/aaPX5F0Q57TGNxypmLLX7VIuyMQOaLmR8iP5SwJemv9ZDPXGc+K1XOuvpXsHONABoQiKGQfsEynTSiwj2PCPmhgtmn5T2taWebek3vlhdkAVnMOrBYGo/tSoL2oY8Kzodkax6sH89GBoZOVUlZLIrPZ9PCdkaYWhtipX+yKw7jGBErNv4AoFIktGF+yORok8+b3kEsNXXd6C1dSW432OSOox8/KLbU4dDXVrWzdLH+3c/8G/PbgZB9piSvb43WKdmnnedF+rJVvLobbQkAEVkjBS6xVEKI++1Pkwb87bOcv7+vRdDvNPEDgCl99BWwywac+QiwEa9wZaS8u0UCMjuRVNBlSvj2I+7qOdhAZMfcPSRdrqNKrTRBhMb7YvvXVOzboPtHlxEAHZn09O01Mj+lbc1U55bTSMANJz/ul+6icGtBWhIoQnXxwIBhCC7FulEfyaZ8NJ/fFlCvshEwHMZq6/TT5TOBNsDMx38RssIBzerrbYum8HNPvw3yDUot5fcSvDzxecx6bCs1EuVyEywiL9+p7wOpEdQ03rTU0JDA8qVJG24RJxUjUnfYrBtbYcrtR8grMbmpICXdjN9diKtOGPZ+/12F8OZArkz4Y2zTm+h9NadskH2W0NeXmm7zzB8Xz6sfEiPZmK2hDOqJoMgNVoDFdUCmmIjz3u5pZ8pvAjZC7pG5MwWgoLJ9KAhjOPbDxf/DLkpX1z5IbjU4ZwjqPy4CHFcY7vFijjWRN2jpD60tjqpx8ixDtPuM5SrsV2BfG/9OQvmKNqdGJ1Q7y9JetmU/Tp8Jn4TFx1qv9/PpIBVxTaYDSvw55Tz7Aw/hPvC0MYM2C47CrbBk1nJz1PsxdyAWr4JR/Av4fgOxtq+plp6Je5bGDL7hSk4R7ScWvqYa9nGfNYA83UclUvPb7SFhm+nR0JUWM1OskroHNsywY7NM7McdEfQX4pKgfjcbB8lqtywhvaAeCOypIezdfodz4wJBbP7J4xjrvXw/aLePGKhKeOfLmGwZ/vJHb8dKmcHK15q07PSYpEgAcIYRbjBUO69rKtmoepLj2sE8/NhOQxtWSOJ2Wy2lt4zzxdbhHOiVXFOaKRQRjKNu6ARk1IhMCDkvLCpKmT1qYOQq21KqfiTfhZKzNo3/9Mwc6qQc2q8rB6iBxyVgDr5VXQvENGBVFu4FJwgw6rlU8IN1mbVEx3kbco8Ni9AkPOXrjZUgdKwtnUGLHL9AhLhzq8BnMie9ZCepdpfVI2fWRsnmXp2GhLoZ1cM7tXJ8LNc2HOMp4mYJ92/iteHm30SNwusa5QPjWkwsnZE6a2NdHoLIU4sK8Lu8S7zXdW5G008/AvYMDXag/4F4E3+AhYy3jX7q0hp3k9toi9hFJzXBfuN5d8KoX91vVH4+uiWpQ6XIR+GvkB1QJCIDrXHAjaSczF8DpeezmTdi9jWR1DDN9E6nPsrRSMF3r/17LOZ98xAdzfZMleDHUL9j6PVs2nYLxc6PsL4T68GmEZVTKsKh+Xv75h8+QCrmUXLarDTmo5PJdbioAIgabyR77mIMWE8VwGa14NAAjVopzjHhgix5AuncFbrIUELh6DlNzD1s91utfPXdYCPcoBakPjKr1WmsPyBo407mDqBVHoe64sevBjhYLVkrbOFXr6PLU/B2/0C2Mj8AT+C3alFofI7fs39e75pPpFecnhjVGgMvitPrF9w7iFQAgqZxeLP88+iHniInW7iqDUUMGUB51oO98XixurAgzaAGEzgzqg6TeAsdPQxpMrnz0J8wegN2A+Pymm42KvXgfTymrc0NXkfC4j7DoGF+5sX+INvPbwN/+EZTtpiC2epvOXUKc8GeEum4ZvXEesR+GCHtkQb94z7F287914jFCDUhAvzzScvLwagkPWenn1BPHpw4NDL8gAfn+LAEiSDK44zK4i/9wEHz4ruh/j3pcKWIXfMvBOUW1/AGO+l6Bh/kZso6974auA4a+0d4NtGhaV2i4v6rstzRubd9grO1Qr2LP7h3zcFrhJ2d0i0o+fQiEsqig3d41TDjDMos/lER3PHnu/C1gXQIBBQjXzebmn09aFwnsRZpmLToAB4hzT4DIiVl5dHhzDg9jdyuK7uN3vdArAX0Rpl/Yb1oa6gt6inHBNARi5XxHGjsC6Uw0clNC4H6KLjAuUK4idTsFmCqwr5Zn5YBTNP35imWyYpRV5I6d+ZFCRE3o+wYQbHP0DIOee+nUV4OIFDKenDnKCbM05P87iZj03k7NkUABGXCmCdvgMMI8y7LLclde/2xAis60P/OMZtq1wWYC2iq3+dUtO/uafrwZueSQPBYMAGKDuI1BCigSQDZFkgepAXIjcq9drldOgi95lcTd5ubXfYxJGEm/v9LD0255fWBXKUXNEFl1QfONB1Q4z01tZlkTe/GRhIblaltG1pWssJsGEGbD6WCUr54lXS06fbkjR6L/4xEhsfQVAsFy5U7Qqo2lxzSYdn2kcuXQPbr9TfnDG8wdL7at8rgFFnX6bpZSY/Q/h7tL5Y4P4ERri54qVHww3B9QXXBOemkStR+BP3gnRBWwmPOp7iln5124P3SdQt3viGCJnDq50Tind1Te5e146fX1qVjG9NiVyfo6OmoX34UmPievpDrW4vRrFPBd87e7cbORUlWds2dhXgipGXcDkpMNIDMlyjpjSgSQaj4YpPPP2HtJfpBadl+RN3k0bShynDYVuwspX5nL2vEcuDYhlIoXGwDg3hmL7vKcgWrW5WiuN+yBWbOOpHLH/49ZjbMCwoRE1BlxWCyFcgWeyzd3OmwmAMvD3DSltw3pwfjfVputLhqdXOmMbdehpSvIzKkQ1CINzqPJ9ID+nJ7+GW8+W5jO2DKVhdP9K4yVT4NS9mcQyeDnyui3/mO8Ff7+jIdCA1/CpF0zQmRQ8EmgyzsGCGKOFSmJjO+pIXoembITsLxXdlTXr8YurB14C4Pyd/AdjQsTC5o8FtIvXkJEJDffLDf4ZoCzrPhMWYfnXH0Sbx6okuflBaYN4iAlwzAAmhqDkKt/uOF78K7abdGKL3m4nBq4ThfEIID54XWUwbgmXptCI7o4Wf4Xs7kRufwI1SNh+Y2HVmywc0aH8BE1sYi3t0Am32FPH8jZnqXccxiyz1nxy9qsZGCqPiglvdJG+3qmNLqaKk9j1OEFC4F1i2tlD1dPbuE3VA/7JN0CCCgZ3TLPiou2eNVFZqQBJNbUyjo3LjwKGhdBMTuICygof7hQXnUD2UwT5GGIf3m2X3Swz43oc14rtGlFLhoMFK36LKLk8GLotaaINle8xJ4JjUhQ1C9YPPu8YveW/zFDE6/YBEfd8a4tA9mnR6jGZmwKXJKnzrsv5hrlMTlpAjB50VfeV1pyrSA6ASDbwoYt5drTR2Y3vnIa29+cKHO59LmIOO9ZDcHnfsGcVxKRHW1B+3wF+Giy2Yj18pjplowxWGLk0vDt3NZHwVQxQNIXNkd29hlupAL7dk7r+9uERh53acLsaS2r5dhDqlx5G0k6Yq2iAaZrsuNa0y+ZJ9UDjxukKI7zVxoV18e7TAQbfi+mHOhRdxHp09JVc6qLWqdwO7r/OLzE9rc4HA3E2N34zcig2vwyStw072Q/FhLv5HIq5NY16/CAk9yYO4WEGjxRYWF3is3AAB7KroJcL/u+1OR/BKV2Ne8af4Zgwsw8xImR2vC1XWNAY4TTzyW5y7caJY6ZKIkAFek9+5RrrKwQfQ17ie//qgW/0gRiR2RxNr1aFUazDj8DL2omYpXY38JDQaJLjWHzKUw/M7tf0p8eoSkfAZYqyXqHrXUTe1KKFJVw29yfMupmdeMAEm7tOPVqF3G3vE/ytbzdQT/o3NkPO6IylAZFgk9TkU9xcAEgcy4Jc+wr9VeXoKPFQXGLCwE+f+/EzVOgVNTX7tCPRGKcQ8D3IUqj884urrNPREaLEnkhn+AkKwRghBuEXYZbNQefU6S3xawvpl1z5vtlnbh/U5n4tMFTjr4pPS9OXVHRSGLkwB7IU5BT5fzaNAWOcH92wqA4eO0uVsFa7sIYbJ1rzY4H69btKjK54svXzXqf+oELSkkVEblzmEGB6d5Yr46ryw+tGawJJhv1dEvD+nFJM6FwMn096dqbIOByu655j3l6sKl1YEj/aWLxIL35g0uKboOVq/bmG1oXqk7rOXebfFAoYv6C4Gl7RPSF9tlvkKdvvvSK5O7/sep5Q2MGWoGdBdDoIpfj5VqRP5ma0tlbvLo9C/HQj4LWadyZgLgnnPw3dTKq6PnCq7i71JqCq+4EGMgCHhl3Lhae+t9/sFaoeZnbv5uYove2uHjPklTDZah/fZo/Upwp0U4N6A2lLFNQ2XdEl9jwPBw7X+iIh1gGxMaoIt3b9ZTgKf7GLOUW7OA3Xpvqx0qlk0SMgROKjyjqnVY5b6cDKXDxIeqV7a/Cfwq558ZYq8MURuQbx6b+v3KIB1zmgTE0CmoFTt/Zp21yUGTdE9H32YqXuqEeiwv4CLcsOSmO+o0cf30vi2EOzKEcEkaBBh0cTbaYjRhbhqgwcN0q3900ECzuJV/TGfsMLYIUThF4IsPN8hyWgGabJ3wn/A4HhHmzcI5aTQ20Q3Y7ciA06Iqg9qGKWwUL14p8V8RQ7+VkTWgSB4ngUJ42Cmmm/27swi7I5FFhfGfqHKxRmdngohuoFgXtIdGkhcgEQZf2P+X8dowqhJ10vFEacremIWehM+x1aBnyx8hCRVcbg9VMAnQXkS7E1CMzgAgjAKARVovFDMc/YW3b3aojwN8/wI5a6IOdySUqc6BZgxCeHixuubc6W6xF/7MPmNlrJMlq9GNFdn9HctKEwV/BT9C3A2tvgL6NT4M2YemLyj+xcQOZLYq+1pMGwgayagqULMK12mZYr7Huuvqgq7697JebJTECtgZxio3enQRhAJkjGKxIGp+/PlH0IciXJ43ECXjC/BzNAfFdE6dsj9F9A3CCCKzvBeS8lkw9n/NNKDrSNASCDKWuxk2VHK/GxGGWq/B0PPKTWS0Zw+oal/zpneNduLBZgT4Wl6UA55nwjEH6ewscHuO4W+s7b2dHGjC9WCp3SEK++aB7+YS93DpfaD3m7FGvnOlKE+rCVzn8KusHrBeowzYs+WjDU1SV6yvgtxerp/7jRDkaqJ8T0zZ+ioVz+3DAHeDdVwHM5v5ncyqo5Qpt6fcmFEv41h+w/5JG6W3bUJCXH78of+rZieMzunCbPgDsG71JHklqnZ6biMnqd0asAIjx59yuWymF7Gjuhw7A+QwEdEAur3V17wHULgP7fEcMgba2jlLxY8CwR+mZruvmE6gVj7jSeUyKtnKJ5dXbD9mDO9mCO3nMqXO8ng+P0nhxAILOy3ltMOkOFQEc7qJi2edgn/uElsNRJCmg78//31R5+KP2y7syDWk2WFw+VRmRX0cwZK/KoGxDa2T7rP2AU4/p01MzXVLqRirWsy9B2Br+ddCpAZytV3KKrfTYNJ53uQrZo3Wq/98BSkMFYtPh+n72AL6FdmB2PY/8Gp8AU0g9YSSj7Mfe6zg5jYTLalYPd81A+y4wqMAf8C59AsLuJ6/RfKjf/1yHZIo9qSkgSgaXa51R/siFxLJ1JQEnH2j+u3hZSX/Y50zUAldIIQ2ZCl0ra6fOMf8Brv/EGdJ0PhJz98DLmyBdlijd+S97+wtNoXQLLjOFqQCAA7h7xOCA1WHZpZ2UiIQO4/OeIL/yoZ/2TukrgbWQKY/9q/e9PYLoT+tSjbcn9bwtlSPzMKq4Bt58XZC+McKrSkkjykt/qtufw4FyiQMX8YGB+hx1+3uAUJCEuAvaImErtbWsHvZJdTzdTS9FCGjGZFsU/9W8xyYsdKS9Z43S7pP6mpu1Mmkl7Lo0Zts+eNldcxojTUpj6Me7imzteUM9mVHTlw0aZBWN9eVvM/QQ9uImC5JvSAPf/eiP8ri1H/gz28Lmvmbq3Cw6GUbARRLI7dC6Fharb2QHH56/q6SutNaVZnx9naXi7zWEDSK71Jtv30vVRsFt/iJVS9LmP47aZrT1othhtCWMbJhp5it4j8GLkQtG0KxyjMqc7LcjuwCaj6POgnieeBriu9UJjehNfqXtn7UtBRnlHUTkUcvuX9bvciJCiE1ST2TqS1cJGnUPR0yNywT/dRpRDzfzHZ2ln9Ewyeoj0gXFzmgFrtgD0qpKr5tphTiPn7le1Bn6niWQ/4rKZHXhd0lmlcHIQ08QkhR+uqjXdmu3q6X4WaCJwdivsJM8kvaKoXMoy+S7r1vuo+oN93QpiSX1oKPfxw8VgZdcROmQ36gzlH/mJqMK1N+4FxaMvlkBWC5xuTxhxRreYcP26rdgNbyL4T2LcciHPhjvc67HAXiCHvwDDn42S7czwONyIqfM+DQ0fLcp5DJ/i4jfrrX5zMOIrqZK4yGj1yQRKh//TjgOSX7PbCi42PEeu3Hqx+TtsTgEiGYa5jWkBP4V4UyDBKxW8m8aUXyMsA92d3tETVPkp7Q5/VJvll9ZR13WnFbDoeebT2a8uUG+qRKfkV5xyVNSwLemQ+0O9mceyZHY0UxyiLlyBRYRFhowLPZ635NQ19Z07/HK5NRz9JA/z3POY4hDJaApo4PXpfNVN79ZD7fSxzJKEAVABqjBJucOH5MqwpYNHDwH0W/McxsYLOmR1oH00A8JIiEWqu6oWlWpqo542Bysw+pyK9qN/CcXGT//Jzs8lR+QKGt9nzLyCs5rwoCDSd6qQ6cmcHw6UNYIbhHtcRmpY4TQ39FfxP0HRknCsMKI6d60BHXKA7NLrUp7Sv/DJpafY4sSbEp3trRRJTMFsGmLbOfKQA/3kJ40d7I26+q1TIn9H8qEHf98Xd9cG39ntc5GtmRiwwVh9URNzDGvcsS6ckqrvZI9eF49+koRTQIHIAxsBPTbczVpz61v7Qs3wKzGzE+sHb1YRpRUhHaXE/bnI/Vkcx7sgDc7Xj3CW0Mj776aI0Y+XNySsnBn3s0eVBGdHwTMEhH04fWUQ3wMLk+4bPg+P0u35h3g0Ljh4L0CF2KJmeUxAOYFY7qF66gLCdm56frvvKKfL0a1+8GEZknitRZ55FCBu41S9nc9lqu8GqoblxDw9Vq1ABfMXqfF40mqvQ7fSRSyfdSCTcapIe2FJT47kvNlakLGPMHc0jBRzmbf21rg8/ZGplkpEu5MGlcdyr0pAbIAegJD5y4lKmjuPNIW1hASRUvy6cNUxCz4H6+B4VD6Dl24aF+n9oyIzVcZp++CxzCYVN+BZyYzlTYLrQZwOHcdrvN+Z/7kv+C5DsJSa8ITruN5TtiQUC4lr6rdNmfAhwMPa4quK651C8Zc8ATMQ2pke4KwHidp8lTM+YrT51YO4b90z1AaRlEVGCGPIbdPnGa9hg41/XfF+g7VUC5Ip2irxgrnQ0uii8wBCYGu3Occi1BldaDs/G9X/kYSJQlqXoHLRQAEEG4YMtM4kUJrPPvtGDp01HPt1/fv3jhmZv/t8RlU771jem5m9pZ7LV87YFmW0y3TeOavUBIFeLZR4FbA4/+NXyph67ur/DYRvl8jvvcpCqq/iF5qtLA2QAIUVeb22MHUsHOY87K70wY2f3oJ1H/43UoPyA3gDxcT2wm7XZzKpG8ZPtwt2C9Zr5Hhb3rCKNDZhZYSEj4JQaqyKDXNVl6uAYWVkwG3HsGPUufVIsxSxfkW6jpy/53LpOjhqNnFXBZiQ9aW4rfKBgHjOtM6SixOIzxXhfIW67dKa6ym++sspsLhut/7gfbVxqd7CSElzlqbR7k9aU0ns5qdjlYZUsp9ikrANCyHjQh4nModqGejBNM7yfEzzqFxNPATP1c6iC87/4Jj6/MhKh/0pUNITK2RoMPaKVicfsbD5d0nzbuembxgJgj6BsxUQbu72UdRrWcumlqxfuSlZzhYvk4kxYHhZRsQSUT7Cg+ERJsCD04AOP1NwLHlg5cSa6ax6loxoJOdORKHRTPe0FrpBTY0jiGxtb2LGNt2bOpDlJrUOIvnphzE76JO+d5EzV9p7RZkS4f/c2yE7uG9bvdv94ca7JCS7THAMkRP4FLGLnDyCTDtYSkloUNly+bRB4TyVHGsCZRXzchPXrD0auah2s+xKX0naeuqrGVnEY6ZEDkODko7Z7BzdPxOVqabsXS1U+X0tgcKPzHDyhA0umvE0liSOcBgToq41eKQkFXZuaFIJvqf0sbX48dgS+xxOSttE08twPbBAnpM+QNPMmlsmnN35tgq+in0rHzcM8+eJRu42IxIAthxYId3Z9xTeKkLrx/TdXRBYWgKGb+Qdzz/nyH4/pcs809hwFvyj1XnxXS3VpX32ZLiTd4p1SzW7EQgCnZ66RFsfz7dPFX1bKjqLafVQyoRkMW+t91LR79rgjkT43yyTY/0mfGrHX7dXPR0kjlG1NdN2cU3lSefCs5snpUGPSyn7tt8f3KFI2YPpQDquWqnYw0h2mdq9aP4+/TsLnbSZSrJksTMNHdLQGlrkM5JEgRiyCEI1MEKwqpFza8Pg9P1ppb2oAIoukpZ6Lj+ScGora4tL0QCDh9r8A9bnrq6YUjWfOLX3lxONOu8hs4AZmTzWST+Cnvlg8C0LK2HzyLDQSVlDaHRcqB8cJf9Y1CkaBjFTDRgciCAgiaQjb9W33+Jz/CentZ8cVQgv29AyxQzDKO/u9YShz56Oj+AqEE7n1i9IU1TcC+G/dd88pArB1HiF/zaFaLRENgonHYGlrMxPVbgLjn6I/8vfiuGS1A8BBO3jkzuh4cauYCc89ANIrOvRMvaN1FKa9oqNDNnSqDv8LkMmL6vt+Hfo4A+4bb77TTWo5PTkolw6H30eap6fu7SFJj3H72POu537zMt+2vWSiGvyJVOXMn4+3Trtu2gL02ZpgLR6Y/d9WOkXeAJElGJSGpe13f70rn/mGeYZj4TUlOVJjWONywm39+28MvC4XEm/4T6pZFIqVob0qXx/7lc1yjKbu3RjMBgHTo1mPqpFNQS9M3dlK9JxiarZpUMkDhOmoN/JQvCPMOMH/1Qzbyx3/ocDmBqlYG2uKjKZ5cobVE5HrvMTjtl/8g49W/+iUoyppr3OSxkSU3/Al7rZKnHwBMXAPePyiJC7q9+wNOY5jWgq/XirPX9wSVXS+lISoG0k9Esn9knMqQftfAE8VsOrkB+VNuc56g5GQas6p4mQ3UWhaLDHK0TLHawREJD8uV8xgM5BXB5PQH1xVXUNVvvEoGn2AgdbcBZZW3FI0QFWO0cDC7TglsbWOT219B0bRY7FZXaNJ4opPtrM7K5ZXAOdpxswA23d/FnrxWihfV7GFWu/mTaF4eksXvFvZN9/I+GuHIVtoOJFRVLFUwAC2VIx05rqLuZ4tLkR4XQqwCRwbg7vjCrtXJOFwSpGDwawNCs7fV52vbES21u+ChDMgK7doIjGVBYbWDsx44OM16BZ6ZDa6cIo4xGqnAGcDnqeOv485z610KJ57k222Yen6TcX9pDLq7Ksf34oLWRkXknaWIY7yeMEnkEgjqK6GBQtnLhgBuG44IUHjJHPy/wDsv4UisNxxkPnODgkH8+wIzjjnjk1LHh7IlAzAhSpEnLDPBDd/bPXv1rSyRC1I9pZgQMcdxnk9Oh5AHUd+varELL5+xCTtXkn0/wAffp2qHag4c9Qc4YjHqfz4B6jjFT2xXzeozjH446e2Bjj8abYR3K45LMQWGeufXOcHrjPAHY+2KchZSuC2d2SOBg9889PX36daeyqJWwSWGAR1OP8AP5/hQiopHPHfJ9/zH9MYp3FbUfMp3kgE4AI57jpj3/SomBVCx3ZzkYPU9sE9yTx69DVmWRVk2sRyO46j+vWocrvx0LcbSe59unrnHp9aExtaku0i15bn+Ig8e9VlUKxzlSSMAnIB7DHbA5x07+tWxt+z4xj0GcfSqhOP3mOuBnPGO+PbPA46+xpBIfb7f3mDn5BtG7nb256c889/wqHy18oNvyBnLAkAHPJ68eg/u4qeJjtk3Dbld2SQP69hjPaoNzlFEatsQcLuySB93BzjPfnqCM4oB7AoY3HOflc8j1/DjGM5B5PXjim3A33ThTuU4DDr2wB7E889xxSwjdOpjYbSckjnj1/pnqOnasXxB4jtdHkiWSN7m7mYiG3jHYcszHjaFXkg8gc84obsLoawTzlCmMeXKNm5lDBgf6HOBn8eorxDxdapO99axOUksppN8Xmb9qbioJG7ggZ7/wAP410Go/EXXoLsSWCaPKAwLwwbpgqgkbTI2wZx1PfIx0xVKTxHZ+Ntbitb6J9OeVCHZYxdpIwU7jtBwq7Rn2Ckn1CUrahFRmuVM7HwbOmseCLRBciWSMmCX+Mq6tnYBk87COCSMEZ71Yu3ez1ApbtJugdE8syZYxg4JK88EFMEnPQEYrkfCeuWvg64vbDULgT2dzKz+YCpaID5SSFyuCAv8XHJ7mu41yMzXiy2ZcTgqzQOC6sSMEbOmQoBOeMdOeaiT5tUW4OmuVm3DOjwrNjYp+bkkAEDkEfw4xgjsR3IqefPlRFl2kqQAwyc8HB5575HfFYelyzLaokyud2GXBAGOyjnncTlc9Rw2K3JwBBCJCQSnzfMVx0yT6eme2eK0TuiE9GQ/KoDANjqDn8uc9/X049KmmIFum8kKQclTtA45Oew/l17ZqvhmcHI3bsAdMH0x7Dkjp36irVxiORVUZZUyR178fQk/nj2pgtmV0jLMSVKsAeo9sduo68evPem6hZw3sSw3EJmhUK2Dz8w5GCOQeuexBxzmlDI7ddy9QQ56djn3PcfTHGakut+/GEXCDDEYGMc854H8uvNNijojzXXvCs8QQ2sM1zZ5yHiZA0YJyuw5LEfwjjPT144R11DwprH9oafNJFdxNs2yJhTuHQhj64z8vUAjsa9MuPHryfaE0tIIlSQot7csSrvk8JGPmfpyeOuR6Vw99461L7Qx1TRtPu5DFst5vLNtMowWTbIreYFypPGMncMjOQOrzKzMoRgp6GvonjrRdWZrfW4E0W/ABiuj80Tddvzv8yrjI252kBgMEjPVfYLafw46WVxZXzxMvzWMqM6jcNhLOflJAI4wTkDnHPI6LpfgVvD32zVL+Oe+ZWj3XM3kJHjnAXcQOD3yxDDjB5x9A1jQ/BXii9ls43vwFKrJAzJGq8k7Qx+Y8jsFXaeTkEYNpuyO1xUYcx1lpeXfhmAzXF1qUtkXaNJZnJVidvKFmACkKFUAfJ+L56vTtVkktRM4MhdgQ4jKhQcnJBwCoXGQOTtLDqCOc0rWYPEMw1SVDLvYqttO27yyg4A3jaXKv8Awgd8kcZ6DR9NEd/Ndi4PklQuwblj68sMnHPAyBkYxwKcb3MGludLcFWkjchtgGcjnP8Ah069xxzmo1y0e/naRgEEDPPUHp9M/j14luAqMpLKFA7547n8B+nWoNpCMnVicYKnj6jODxnP978q0TCWjLFsG84E5U4Jxnr07fzPr06mmzDMx5wd3Y9+3+ODx37GpLdsuCvI28jjp29P8g1A0izSuQCUB2lgQR6noeR26Zz7GjS5dvdOUd/O8WagttvKJAjNJvMiHsRsUgEkN945J2kHpzdgPmOhimZmif5mbBLFeDkJgdMHH04qOSSKfxdqJinLxwW0fnIUMiBiWVhnIAIAG4cg4HGV4sXk1vO0a280bOH2OobJJwQV4IGe+D6HjivnsZFe1bTPXw79xIf9rvhxvH/fI/xoqsb+6iJj+T5Pl6p2orj1NbIGmZGNs4JkcZ3qQu7op4yWPUHP05rPN1dadr8DraSXTSwFHKSJEoLMq9GO7ORx/vfnzF344vrJEja1tXkcjLKGUZK4Pct9Pmz7mn3trdaro+m6tqU1tKLqGMi2hhkhQGVTyzLJvbBUH7w79M16NHDyjPmbM5tSjynar4ovIvEMOnyaYIkaJpHlkmxg5UAKMfNySCOMnkcVYm8SCLVPsgsbou6eZvOEQc7ed+3pkZx6jua8qtY7W8txEdPto440i8mNHmCqCHbJPmbiwMQ53AYJ4zzXWeB/CqeZNqRlhjRw0AihjkBBaNJNxZ5GyRuI5Geevauv95bRnM6MDqJPEotL1YIrCSdzErM/nqkce5tqgs2MkkHGMk4NNfxHEkM1xDE9wsL7JnEu1UY/eyWwuRwOOn4mqWm+HpH1PV5bq4tZUViqoLQdSuckszHqc4GKsJ4XKqssT6cLfc4RHsN8iEn5SHL4GDyQFAPPQnNLnrdwdGmtCO58XtFZWt6mi3riaUJFERtYsW2jv0GM4wcjDDpVeTxTfxWVzdDw9JMYvlCLdgAt/d8w8E7gQWGcYxzwTd/4Ra5sZ0mN3p7woGAxp377dt3bvMaRu6nA29x1xVebwpqJhnWTVbMieZ2dlsGDAEg4BMpAPvimqlQSo02SNrGux6ZbSpo8N3cyMrOLe4/d4I3HazYIHVQex5waIfEep317JEuiE7YBKZVuFeP5s7UDDGeM57c5z0BzdHscRapq0cdpHFbs6Rx+XI0pOxHBaVpDkYIBAUZwDkdKzrTT5r7xFIZfsJaM+Y7GCQllG04A83AOWIBwcDAxxmpcqzvqUqNK2x1Fp4gubiG5u205fJt5NoSOcSyMoTdk5wFOSRyeR+BLV8W3Utla3EejNdtcEDy7WcSGLOCNxIABw2ev41gadY6nq09yqXdhDbwzTAxvZNKTtZem6XavBwPl4565q9eeHrd54Xt9ijauTP5kjc7l4IdccD0/lU3qrdlKlTeljSi8T3F3PPY/2QJZ0jZpoxcI4GSBtI6chs4JHQ/jwknhq61zVZVjB03Tbabyp0NwJZJmIAYIgG1B93Iyck55PFdNpuh2+lzzzWiR7mRJH83zJMrvMYABfAOB1A5444zRaWw1DU4YJY7WR3i85nmg3jHKlQuQBnGc/nmh+0vuXCEUrGDpEdra6lqGlaXYK11YorHz7qOQtyEKlVIXOcNyR6FTnluZdU0UTXcEUsdpI0ktqZiY2cDZKWRRtwGxtOP3fOOgI19M0dDdXFtHHZr9pKyPvgZ0Jw6klC+CcDqeeec1YHhuP7Oih4WlMcbSPJDlCHO3AjDBQBk44PbuM1o3U7h7GCI7nxPqmlWU00uiWMRZ1W2to5WEkkzsFxtTIwDgkHbknPBHN278Vavpk8NhcaOk005+SO2l+YDocnnPruwOCBgHpJceHm1u2s4nnhTEgdx5LbW+TGMK6/3s8k9BUd14WgFz5qC18w7IiXgYjLjkgBxgdcD1IOeKlOpJXbIdGmKnijUX1j+y30N4sRLJIWkUlRuwxBUnplSPQZxu4px8XXMWnXUkmiXCyAsIofNV3nbeUGFU5xnGd2Mk03TfCsq2zTx3VpFLJAS4hsvKjJK7R8qODjuQSc+2BjTt/B4it2VrxN7/AHmig8sH5cdmz94buvc+uaf73oxeypozbvxpdWWoWFpPowga6njhAe8Rj8xKghfvcHackcg4AJqpF4s8THVvsDaVpNjIgQyS3N7vJVmAICryCxztySRjo1T6x4LTUbtHFxAklqBMpNu2GZjtbcVdWP3c/e69c4qva+EkF89nejTJo23RqsGn+SuWA5YbyW79x16jnOinNIn2ULkreNrr7XdRfYbRUtWIklmvVjVmyQx2nldpUg+mQ3TNNm8ZXlrplhNs0/7ffvHDFH5hZVZ+UO3duOBtJA5YMMc4BhbwvJoVtqRhl01V8qR0+z6cImRtpYEPvLcEDv69+RbtfDpt47G3jmt4H2llkt7QKQBh9uWLNjqOGH44xScql7XEqENxL7xPrGmyWcd4NHkmuJuZhK0MccWM4w/JJAYBx1xjb0zHpvi+4uby9hu0sbi3t4UlS5spykbZXcQA7ZJ4GCo+X155lk8ParcTW11Pq9ozsjvCo04bY+Qyggud2Cfb2xUR8L6zY3rLFrGmot/Ltk2aTg9cjnzT0EjAdP6UlKq1uEqUBsnje7tm0sXMWnJDdyqhjWfaYjlSWLMQCqq2OAeRnngGbWvEWr2olubNtIitYdpla5ZmI5GVzuUElSxzjnGOeMqPB2uQXVs41/TswpvU/wBiRlsLxjczlu3XOfrUf/CIa5Npwhm8RWflzbEYx6QisUDbSCxckkhjz259af73SzEo077Fe48SeKfsen3WnjSmgvFWN38qVhGW6yhyygpzlfbjPcWbfXdcFxMs11psllDFvlvzGwQMGG5VwQCNhOOuGBOSCBWtD4Ov4xZxSa4rw20aiP8A0JfM3KMAlixyMdQRknnNVv8AhGdUt5riYa5G0SugZGs9zMFXH3mcgHk8gdPXrSk61ty1TpPSxgr4s1h7zUpbfVLBLO3LBHmXfgAfMQ2ANwUEjjae/c1yd3a3PiSe01m512CGa6D/AGraSqxqG2LtBbb83ysB3yfx9Cm8N6qxRbLWbWCG45mE2n+e7EYQ4ZpOAQeBjj3zSzeCdQhNsqa3AIraJUwdPDFv4SeXKcg/3Tzz3ql7S243TpLSx5zaeCrq602W+h8QCQIGHlFBcLgHDZZjtX5SueOCD14NQzeBpn1nTray1p3u7lcSeVAWEAAxIHIIGAdvGR1+70r1hfC13Y2qQw6sHg3hGWe2EjYJCnB3YGTk9D1A7Zqi3hbV55bS+h12GIBE+Q2JfO9MNnMm09sfLxioTq33BU6KV0jgJfDNzdaz9i/t2BILSJXkmeLcA5dV2hC2zdwp9T0zXV315c63pV3JYSbntJDH5sk4JnAGHkVYztVSwDKM8bScfNXR3Hgq6urqORtaztQRyrJZo6vxhsKTtXPpg/jQnguZhLD/AG5cBGKNJGsEaxsoQqy7AAPmIyevAAxxk1y1bbhJU27s5a3F/B4msLZJYPtUsZeVYwR5TAYO6KNiuzIAOT1decir0mp+KrrVJrVtR0yzW2SIFRFuyScMcBieCFIyV4OCMc1q3fgW+F75um+IWswIWDA2ETEkqy5+XaOMqRwcEH+8asp4OkSyuY73VDd3dzlRN9mSJUBT+4mM8gnk9/zXLVWzJUaV9jG0658TymOS61fT2kKZEAtwoYZxu+Ri3LAHJIGD0HIEsPiDUn0Z5NQvdOj1BXclf4YkyfvIPmGMFSCSOhz1Fb1r4WAtVJv5HZ4xhTDGkYJGD8qBSR7E01/CMUdv8125YneqxxJFGGBDDhAGIyo6tnrzSSrX1YOFLsc7J4guojax2+tabMx3GW5lwUGFDLtRWLDAIJBI6E96Zd+II9YguNMj1Owu/tsLwq8Vx5W0YBQcFpGJ5Hq3PAwa2W8DSTNbTDVVUwn/AFYsIRGec9AAehIGSccHqDmvB4J1NSs7a1YfaI2AR4tISLBD452uCRtAXGfxqmqncSjSWyPPrbwDILue3vNeu4YolH2ZlICk9RlWJcj7wwOmCM+sNr4LjN5NZ3uum2VZALdjaIrTgdeCd54IwCTnPIOMn0218J6vIZDceJ5DMfLw0NjEgUB96jnLEAZXljnOT3BsQ+DpYY8z65du8hVS0UUacA+pVjnHHBA46VC9t3Hy0L35TyrTvh9DLbXc+t6pc2lkJGWE7EgLgYIZi+SRguMDr7bRm5ofgTSZNDu7tvtFzJEzJabpPJimAbJ2nO7nA7/j1A9NtfChjVIp9XvZ1XBKuEIY9Odyk4x2z6+tSv4TVrJLW21O6tIlCjfAqeYcerEHseoAPvzin++7lNU2cRcQ3GjaXpTotjA2UhFusWxYVOFkLMWy+FJ+YbsEE4bcca99rWuaV5RjXTbqGSbZDHDA0QSMEklmdsYCc5AA47DmtG38E3AjAvPEF5OIBsidIY1kCrnG5yGJPPJGOlXbjwvcyyRAaw8cUQGAtshdj0OWORjGOgB4OSQcU/3vRkclNlG716WymWa4eKW0kkWOPYdhQBgCxkbAbjkDvgjmsmXxZcDVrW3SS0ltbgO7vGTthRc5Jkz97GBwMLtPPpryeDNSfUEkj19I7UKm6L7AruxCbGO5mIG4c/d9OvOYB4C1A3sdxceIlkAjEbBdOiBY7NvViw25OduOQFBJIzUxjV6sHCl2KFrrms3N/evHfWMNjFJtTZD5shjztYlzhRjAOMepOehoHxRe6ne3ttYanZ2lrb+WHlNv9pfJfY+45CA5OeN2QQOa6CPwNf2kkwg8RSCxmIzC1orOvy4ba2doycH7nQY561LP4P1GMt9l15UJIaRprJZGY7NrH7wHOM4wQPSq5aie5aVJ9DmvDFw+oXupSjWYdUmlZWlkW3PMZJU4ByAufu8kfK3yjNbcyNesEtWt5ASRO8jmR4x91goHCkEA9expV8DalBrU2oxa/F59xCI52ex3bvlAO1fM2Abhu+6TjjPUm7c+HtXVJTba8io7BAJ7FZSu47G/iA6hSBjA5BznI5a2FlOXMmawqxirGTiG2HkBb7Efyf8AH8/bj/npRWr/AGRrn/Qfi/8AABf/AIqiuf6pPuXzo//ZUEsHCP2IWm/z1QAAHdcAAFBLAwQUAAgICACchR9HAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgICACchR9HAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1s7ZpfU+M2EMCf7z6Fxk/tA4nlxElgCDfczXTKDMd1CnPTV8XeOCqy5FoycfLpT5b8L5DQYDgy0L5grSLJq9/uSiuZ0095zNAdpJIKPnVwz3UQ8ECElEdTJ1Pzo4nz6ezjaQQigllK0FykMVFTxy9a1v201MPDQVGHcklPuLgiMciEBHAdLCAmlyIgyjRdKJWc9PvL5bJXDdoTadSPItXLZeggrRCXU6csnOjhNjotB6a557q4/9fXSzv8EeVSER6Ag7SyIcxJxpTURWAQA1dIrRKYOolgq0hwBzEyAzZ1/qjkssfUGbvO2ccPp4xyuFYrBkgtaHDLQWqNPKccxrWF32kYQgHN6Rd95EIskZj9DYEeR6UZ1K8xgmmjf/4imEhRqrv5AwdpyD520MwMSliyILrUK0dkZAUpuiOs+LWs0QN+FSHY2qGtJZzGhi6SCpJCISQTgNCUapUTPZyx6pwwafQ57Zd4toIqGGyQshUNKvxqqFwDyn3AyT00p3nGg2LAq+8krefAM8ZanEa+02XOnu/vmPXYP/S0E0G5avmGltAv8xTg19a8sdtp3m1bGwY/0dp427Q/nAZCpKFE+dS5IlcOWpXPtX2aJobANV2Xrxy0a00wNPo9EWMICXAdLGqDJe7EcjQxMIvHzD7eL0xGZcPy0ggNvsEWX7Q67uOM2L0fhEf4tdaebgvsfkSP8JP981t7s8ReJ6/Enl3ZzPM/GeUX/E+I6EbigQf/s+zEctMjh+94zzFNLCtZ/J06gYgTBvkLApYQFVLN67qSa8Ret63owCncXoC7rLQiU6x41wVX+jAEJhuUVuXWy28Bkhvd+Ru/SQmXxSHKtqlgPbavtdLwy80U3Ht+ivWebAH/8I3woDo6aEDVvwAWQSYbwlaqEU/eKGKS5ZRRkq4e+OLTyT7v/ON129l2r8newc8/KVk9tkJ2O/Ad3GXe6gpZOeFOB3x+UnAQe7xkoN7pWYsmRL+XYs1o2wHpLTD6ST67JdUiqQJJCX+cs4K8SZ5ujNC6EDks5B07wu7JaKNEjXIXVmrdSdjpzKmmxEmsO9gXUf6ZBLdRKjIePojzl5n8qx2/d8MJBKdBrfwXK9Vwhm80njqlXTQCbhcYiVDulp8RVq7VHK2rmhyXNStc1qxxy5Za5ZTm6Lzqd141P/eqwqAqDKuC38LTLf8zhkx0eLe29Hur47DbmefwN/zv2KCvkFjwLIa0FeRXlVw7hm/DXI+XVefrSvd9wrr6HMJoqN0gptoERzrTjYnez4qMdyYFyxRcBykAbz6hWddb0lAtijOg4ZZXliifc5oX7mGbLkRK14IrsuGqXVzjviMWc3juSkp4xJpQOrdSg9heMppG9+8xtpNv43RLmqOeNxngiT9wx3h87E9Ge9LFk650X+yu+cmLxZPs6pV2TYPW1ZG7y9juZOyNRsOR5x8fj/FoOH6xL2g1nN/qiuYL2nvaTAfdEviZEAxIg+lzJbdu4x8sRrvyrv3d8dn0ggUEtzORb4TMvZn2Wx/s+9U/BZz9AFBLBwg+YESKewQAAJsgAABQSwMEFAAICAgAnIUfRwAAAAAAAAAAAAAAABcAAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbO1W0W7bIBR9Xr8C8d7YjuO2qeJWUfewSW21qS97JfjGYcPgAkmc/tr+Yd80wCZ1mrXSUqnatL3Yh8u913DO5ZrJZVNxtAKlmRQ5TgYxRiCoLJgoc7w08+MzfHlxNClBljBTBM2lqojJceY8t3F2NEhGqbOhRrNzIW9JBbomFO7oAipyLSkx3nVhTH0eRev1ehCSDqQqo7I0g0YXGNkFCZ3jDpzbdDtB69S7D+M4ib7cXLfpj5nQhggKGNnFFjAnS260hcChAmGQ2dSQY9IwndpPcDIDnuOpG77HqPPPcZrEKb44ejfRC7lGcvYVqLUatYRtjB9EzsdOX0kuFVI5tvsu/XPmn4TXC2KR5cO7crIBhVaEu9nOYrPdyAJa66i1EsEqTxPSBmorB0a6Big8ardgs9c2nZdnTrjuFsOZgDuz4YDMgtFvArSlcNgLcuADKwpwKrcxcC/aEO2eOa6JsqIZxaj9RovB7u3Hd+c+iToq90i1yxHQY/WTH+/QasU6iNbx2PM6TMaeWf/ecpu9FbdUSlVo1LSCok33fuje657Qc+IOTreaQfIycVQKRnvEfRSWb225cYukS7WCndLMDuNwmGWexGR4uleeyR9dnqwEsbLblErbrhJ33WkTB/6DpUmCMklneeiAz2OXrFiDpiFuGtynwwDSAEYBZD1Rn54TVtWcUWYO3drzFXG/JIU/fp2in8P4sQzSOHlVGez3qNM3O0ivUQJNTwI4DeAsgPFWrRfalOSbBRRKisdO1TP1GW4P2iE1+7uqJFnqVcmSPVlGb6PKC+3JdSBKlAHNiOj1qSs38fS/efKv/DefJ0yA2W731uF+TWX/a8q666Wa2zvhr6qqm9plbfSX9ro+A1HvOhqFK+/FT1BLBwgUufwPlwIAAHkLAABQSwMEFAAICAgAnIUfRwAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWztG8uS2zbynHwFioecRhoAfCczScnOutZVdjIVZ1NbW1uVgkhIgwxFMCQ1I7nyM3vcwx72G3Lfb9pugKRIcSTPy7u2K45pEECj0e9ugMrZN5tVRq5lWSmdnztsSh0i80SnKl+eO+t6MYmcb77+/Gwp9VLOS0EWulyJ+tzxEbJbB70p81wcU+m5I+ZJRENKJzGjycSjcTSJIwa4FkGYpD5fRGHqELKp1Je5/k6sZFWIRL5JLuVKvNKJqA3Sy7ouvjw9vbm5mbbbT3W5PF0u59NNBQiA9Lw6d5qXLwHdYNGNa8A5pez0r69fWfQTlVe1yBPpEGRrrb7+/LOzG5Wn+obcqLS+PHc8L3TIpVTLS+DTC12HnCJQAcwWMqnVtaxgaa9reK5XhWPARI7zn9k3knXsOCRV1yqV5blDp34YsohxGlHfDWIGe+hSybxuYFmz52mL7exayRuLFt/MjiBXIPRaVWqeyXNnIbIKuFL5ogSJAkHlGrpVvc3kXJRtf0cPOzH/AYh6KxEbKM8KAjqcnrjcPQEdnvg+tdT0tvYZd0itdWYwU/IbYcSn8BAWkxMShDDCCfOJByMRjITExTGfecQlCMJc4nnQejjMApzzYb1PCWMwTDglnBPOCHeh6/vED4gf4kIOsEFskFF4EBrIgcfFMdeFx4y5Hjwc3wCRb9EAESBv8+YjNOD3OZJvBt2IeDFshAN+yIgLNEA/pAQwuoieGSY8SvAvIx6i5yHhEQF8wDdipvyIUpr+TivNwJ5aWqX4faUwUAY+ATxGW3tK8YYqAQ1Q4O0EG2YbJDcI7BS1Y9S1DbeNZxvfwnh2uWdBLbfUszCe+1g2WyZ5n0l6Ypi7lcGoxyBDBkAhSLlpXII0M0M7Nl7TDWzXmBlltBmN8J8YOyCPIDIvj+THbflx76M01tvVeujhTUce3Pkuj+8mwceZpntQY/wQd8eEuh+gxjJt92N+bz8fQhL+Nc9oR/cYi+8MiQ/YMBi43f+a3fA+Oz6Y3bPTNv2cNayS6hJhG4ut5arCmOPGXSYIMFY36SDkvXRwggkh8Hc5ATNCNMgJftRLDJAVAhwMTZaBPTCs2yTBvTZPnDSZ4rdRpoDA7u1iO5CGqDByNMEdduf98M4hHHASYlSEXIWRgXBAyQlkhQDXHYj8Dil0pTq5Xsqs6BRiRKjyYl0PxJas0va11gAtMlPjNPCpTq6edYJuMElR1X20UCDsyhBbMAyqlM/OMjGXGRRzb9AKCLkWGfqx2WGh85q0FsDt2LIUxaVKqjeyrmFVRX4R1+KVqOXmBUBX7d4GNtF5dVHq+rnO1qu8IiTRGe2Y0xnrvfPeu9txAB2vN+H3J4LeRHjrvhpmyLqSsL8uqxZcpOlLhNgFNBDg93m2fVZKcVVoNWTj7NTUgGdynWQqVSL/CSy9Lbi+W6/msiTmVaNezf4oMdIVixh622KRx3FLoi7TN9sKHINs/iZLWDxh03j4B2xma+dcl2PpXCUC3diLh5CQ9rYHpprt5HWnL7GRO9aXJcaIXudl9UxnuyEjjeeiqNelqfeBhhI5meXLTBqLMcYMhXNyNdebN9ZUXIvrx20hcYmhYL40WiAQZbjvA0DTzm1rYJC0DooaGGogaGt7Ku3mWcwNhGnntjVQYMyWtIZV1rLJaLuNqkxspM7QeYwrYB2+zlX9qu3UKrnasYoLrNZbgxriZE+F8+x0z+LOrmSZy6wxcFDmWq8r6687OsDaL0R9OcvTH+QSYs2FwEhfA+Z9yFQmagU02vFGdgL1+heg1I6mclnKlkMbfKxkzSztm/Jo2KB6UerVy/z6RzAaO9lzq5adsyopVYHGSeaQeq7kzvxSVQlIXGl/3UAq7rcHnImiu2x77287J/M7P/LNzMYYM9YsBq7pTQLs3u48No7c13fc231n5Clj82zS8lNa59Oh5E+GssggjfSR3TlwgEUUBRoQmH9X1fSIalJYs02pf8H8p3NS7+S+525oWCaPAIIGVtVIPuSPdX2pS3NcB3qhRaPM5AoO5w1C8KvlThSmt2Lm7L9Q4CW5qb1k6tEEjhhxyhM/dP0kYmk8ny/CKJwveBD/vRDLiRtP+PSXYuk0FcIzkVwtS73O0z13gqRTi7K+QJsjuZGtMaCNMX+ovnt/OBSkW7BwmGCDXOGHMPPWXvJYnCBDoucorj397vQD0wdiNhFZcSl66DKxxWTZCxIG22udDkPHQm1kOoxXoB4r4pGwjZt1dM2cEd3DQGy5kNd4Gj5KvzGyhgN6Xw5EDlo3ZgNBqUAEaPaFlNYHW7sjYPJbExwG1QtEswo1x6d4PNqa5cFQM4ZrTLeD8G1H90LxXUX37FMSnT+NIiM6f9/6/ScRZKJXKwFeaH35uSqTTDq7Kl5QNEUiGIrVympdtxOJRdagGGkFoo5KOqEnT6YV+nCd7EqqGmr/q1xWlQn8nTLw5c8qTWXehVmoeGV+DQRD6U3IhjZ3x1vaJuR2ZMNsLII51gy9ZT0NgTWUakNmLfyshZrBmWEChXEYBKDrmdsgnsGJYWJdZ+Yb1PBqSfo1t1xUNhXhOUgtVHJcuSam7uk2GSn1+XGlDl3t+aOUyrhNg6b9MNyNTsPYo4FPAy+KwtgNQ+N8wRRojDkLKYsimI3em+/NyuSQ+xHBG/UMFJb+zO/ghwUk1U4ruOQPb3xf3qhWRaYSVXeaytDgXuZ4eLH1WjUqeq6kLLB4/j7/sRR5hd+eDtcN73brxiYGdnJxH8e+GNvHuGz6iPz6YBplRz3ZfYJy5E+fUjnCpq4Ro2nfcx334lMSXADxxEjOncZPUwIPo8AbucTxvThwYXPHbJw0jgeDqsHWJYz7hgPIOamyQsNLyWaNGKupPQo/OpnsRO1No2DPxfGU6E7D4SnRJvFJPI3hJLkD9x6RnP6/meBY9f5iZALyPtW7/KNeOF4vULAiKBg72/LfYyFvLt721Pys9XRTJV6MtP2ffx9Xt7nl7LQJ0N3V5/hGFN7X7citNyz3Ng1Gx8bB7mgc7AHG0d4Sl0kv178jwv6ga1Hvi/2FFTvIy8h9HGhffCEKXX11n9qrXfIYseK32qVt5rZ5fFy9ewq7a9k0FPBPxkv3BdwIw4h5bNbr44K1jt+JbP0hRLGdQCEQ9EKG/cpliys6TGD2NnO30wPiYO/jRhNrEjgRykqJvHHg3bWr3BR7hntIZSZFZWO3aJLOeqSv2f3dYfaBugOb8mh4Hd0ojw8PGE9TKO+f+bLtUue3S33WuQy3FaA70OZAH4XOfv8XYNLMrhU/M7tOdEhcPE7iKGSxxd3UZ4lrNdPb46HWe7jybH8ucOAk6rtG8T4beS2/j94PH1n2K2UU4Hui+L7nlvVGZUqU21GJ2YtAt4Wa7YHI9BYv8j2X9mpl9yOqld+ht0NR5sPVnTu1Vxre1GZjUFro9UOSF34y6kk/Krc64FUHnGrC6DTw+24VfTJ6W3x0btV61aRzq3Dqhf2U/pADx4ehnbnWmRS7zCycveNc/zP8k3wyf5eKvl8sKlmbb8TNBa17vPxqfqBFzKf1Pi2JKMx9k4F+rau6FCVJlYDCQ2QjsWyKEvSF8C1TclNjEWRq3y9+Xev6q29llelfQTSaFDqvNbkghSgF/kxPQ/EMw6Jc/f6PUmkiV6T4/Z9Tu85sNhQ8Ynf2trrrjVr03k4i5meRlSzVYvcTQihMXzcXG/bHJtRpjZW9y4l6Rwj71d+Luq9ne4XyriLuq+W0/0MV84vF5v+G+fq/UEsHCGBTVYb5CgAAvjMAAFBLAQIUABQACAgIAJyFH0f9iFpv89UAAB3XAAAtAAAAAAAAAAAAAAAAAAAAAABlZDQwYzAwOTlkMmM1NzM1YzgxZDliYmY3ODdiZjI2OVxwYWctMzktMi5qcGdQSwECFAAUAAgICACchR9H1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAABO1gAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAJyFH0c+YESKewQAAJsgAAAXAAAAAAAAAAAAAAAAAKvWAABnZW9nZWJyYV9kZWZhdWx0czJkLnhtbFBLAQIUABQACAgIAJyFH0cUufwPlwIAAHkLAAAXAAAAAAAAAAAAAAAAAGvbAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbFBLAQIUABQACAgIAJyFH0dgU1WG+QoAAL4zAAAMAAAAAAAAAAAAAAAAAEfeAABnZW9nZWJyYS54bWxQSwUGAAAAAAUABQBjAQAAeukAAAAA"}; // is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator, DA=Data Analysis, FI=Function Inspector, PV=Python, macro=Macro View var views = {'is3D': 0,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 1,'PC': 0,'DA': 0,'FI': 0,'PV': 0,'macro': 0}; var applet = new GGBApplet(parameters, '5.0', views); window.onload = function() {applet.inject('ggbApplet')};

<< EnunciadoResolução >> Resolução 

Vamos determinar o comprimento da diagonal da face lateral do armário:

$d=\sqrt{{{(2,4)}^{2}}+{{(0,6)}^{2}}}=\sqrt{6,12}\simeq 2,47\,m$.…

O varão de um cortinado 0

O varão de um cortinado

Decomposição de figuras - Teorema de Pitágoras: Matematicamente Falando 8 - Parte 1 Pág. 39 Ex. 1

Enunciado

Qual o comprimento máximo que pode ter o varão de um cortinado que se deseja guardar provisoriamente numa arrecadação de 3 m de comprimento, 4 m de largura e 3 m de altura?

Resolução >> Resolução

Admitindo que a arrecadação tem a forma de um paralelepípedo, determinemos o comprimento da sua diagonal, aplicando o Teorema de Pitágoras no espaço:

\[\begin{array}{*{35}{l}}
   {{d}^{2}}={{3}^{2}}+{{4}^{2}}+{{3}^{2}} & \Leftrightarrow  & {{d}^{2}}=9+16+9  \\
   {} & \Leftrightarrow  & {{d}^{2}}=34  \\
   {} & Logo, & d=\sqrt{34}  \\
\end{array}\]

Como $\sqrt{34}\simeq 5,83$, o comprimento máximo que o varão pode ter é 5,83 metros.…

0

Ficha de Trabalho

8.º Ano: Equações, Do Espaço ao Plano e Decomposição de Figuras - Teorema de Pitágoras

A presente Ficha de Trabalho aborda os temas: Equações, Do Espaço ao Plano e Decomposição de Figuras – Teorema de Pitágoras.

As dificuldades que encontres durante a sua resolução deves tentar superá-las consultando o manual e o caderno diário; depois, poderás tirar as dúvidas na aula ou na sala de estudo.…

0

Um pentágono

Decomposição de figuras - Teorema de Pitágoras: Matematicamente Falando 8 - Parte 1 Pág. 33 Ex. 15

Enunciado

O polígono [ABCDE] é a composição de um trapézio rectângulo, um triângulo rectângulo e um paralelogramo.

O cateto maior e a hipotenusa do triângulo rectângulo medem, respectivamente, 80 cm e 100 cm.

A base maior do trapézio mede 102 cm e a menor 54 cm.

O ângulo BCD é recto.…