Categoria: Semelhança de triângulos

0

A altura da árvore

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 133 Ex. 9

Enunciado

Admitindo que os raios solares são paralelos entre si, calcula a altura da árvore.

Resolução >> Resolução

var parameters = { "id": "ggbApplet", "width":574, "height":433, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 73 , 14 68 | 25 52 60 61 | 40 41 42 , 27 28 35 , 6", "showToolBarHelp":false, "showResetIcon":true, "enableLabelDrags":false, "enableShiftDragZoom":false, "enableRightClick":false, "errorDialogsActive":false, "useBrowserForJS":false, "preventFocus":false, "language":"pt", // use this instead of ggbBase64 to load a material from GeoGebraTube // "material_id":12345, "ggbBase64":"UEsDBBQACAgIAIe2H0cAAAAAAAAAAAAAAAAuAAAAYjUwZGUyNWQxM2U4YmVlODRhYWUzMmVmZTQwYjA5NjhcOFBhZzEzMy05LmpwZ5y7ezzTbfw//p5hlIhUkw01heouQ9rYzOHOuc2hc5JQ6CAzOUwY7k5aY0ahtXEjh7vQEZVQ2kiZTBFi2WpmDjFzWMxPn9/pn+8f39/v2l97vK9d1/t5Xa/r9Xw+r+vacu+yAFjr6erhCoBUAAC08gGW+wEXQENdHaKupgGBQDQ1NVZp6a/RWr1ay0BvnY4+fJOxEXwTDGZiusvMZMtOBAxmvtdipyXSxsbG2AyNRVlhdlnbWP1pBKSpqam1Wgu6Zg3UajNss9X/57LcBOhqgBpUnMGgLYCKLgisC1puAYxX3lMN9D8F+L8KSAWsqqYO0dBctXqlwrO1gAoIDFZRBaupqaquPE1aeQ6o6qrpbUY6qa/zPQXZQtS3SqUXaSCcHzWv9/v0y9Q6ODpNc9WGjVCDTVu3mZlbbLfZY7sXhbZz+Xufq5u7h6f/gYOHDh85eiwk9PSZsPCIs6SYS7Fx8Qnk9H+uXL12/UZGNiMn9/advPyCf4tLSu+XlVdUPn7y9Nnz2rr6F2/etrzjcFvb3nfxuz9/6en92vd9WCj68VM8IhmdmpbNyGfn5hcUf3CBADDo/y7/S1y6K7hUVFXBqpA/uEAqcX8q6KqqbUaq6zn5Qk4R122xStXQd6YXPWrWRFj7/VofHP1p1QZTm+9bp/5A+x9k/3vA0v5/Ift/gP2/uPoALTBoZfLAugAOmA04fcQqvVloYHwnufEWuHAULVAQpcokiyKahpQHm8pMFppNK/yyNdHNAQKxXPE7s7o0BpZ21QAqLDNqIHLLyOjt0Ulug3NyrjG/1jPir2z336/S09wx4syy5CVUMaJm8wstMqmW3cPKnyuEWL6n09CtCLSw85IiriT5sJmUH4daBnABwoZdcVHosXiuscBdumShs12bYCBGzWKxv5MDMgArK0uIavKJmhReqecdPfOm6KS92vcqt01oW3mo1rpwMTE4wqi5wZkmTjwnoVmsiJtsLSpptj2+sWRdfbyqSAwj801fbiXWgCVtWCySx2842OHRTxUAjuIlVkogOdlmTekjmv33eBO5cECJ1fFkHThsb5bwbf5b5hxBrmy88jeh4wjtbW3AulR2T/9UcXa0B7yNR/CXjy++8BsP4SanYzMD2YSOClOvC1TOXsC6O4hmp7w8t8gl0098rgt2COlIyvyZ/Jr1790JoCMepoTJjU++oZVN3Hr9tpw3rzx5a9vG0OFRx6+b3YVlJ2WLoxef00ZI44PllyBEjEq8cb5cLBfqDx+PUs5GRSfgOqeU0eY/XMSnP5FRb/Ygq40NDvqoJ2yruNUy2yoCzwuXgR65fuG0p7CwmRsYb6BYaR92Hd07F0Z/fQbdBkUJCs6FoIU91Qvcnl/3773Eu7riXQeL67n1M4q50p1OIlnPYgpB9s7v7wF7GGixkWejBbr1Cia6oGSLv1B1m1DYR9LMlLMXIYVQWKZkRqHUf0cUCdm8lW49BrTtlgFPl6axlOoFXO5eGonnE78oUyZIHbVHQNxSuDpqDmutTPF0YaYR0G2KZUBRYS9IaUrZhfMs1J9i/yrOSlEsdgWp2EXhlk5W/3AnC2RSev9Ky44BsU6YEAn7fQEBI5S4lfMCi43vmRX2Z8qU+mpvKb1z2BdLEQS/+JKmNezpJPMfCUAMt2zhZ566O0AlUn24vSH6MBJDrnyaDxWkZoodQZxBjfv0q2Y2G4Tls/CIvXrWqXyqj4qYOgd/BwiLFp0kHlmHUYsWG8tXvtsj2GI/MLvsoatOAJj9EI2UTr7bsPXRgvEtg0n3BJifmBpXdipARz8OLenKYjvN+2ZpQvXVuGJEmbFnpolRd8npBPDCpw6iY4ALB2+xkWbhKQryJ1L2bVidKeYjqo95y/gFhLcFyN5f5jUBmlxVv/Rnj91U8tsQ2Bf+Qtdk3QRhWan228P1lTQ4SF8pPzQIuZ4dENL18LD1sXsWL8/+ZVBSWmI57vUlO8NRP2+m1MYfZOFUInGUvAP+Mmgu6bCIAOr/Zbw2H3e88nF3w9bdkeZAsY1foo8KLaewy8cCGPvkkWEORqBNpugMegfKhNTfiLWjRWgscKyI6dRLnCgcriVO0Hn8Z8dwGeSnMJ0/wzVZSvSzjo46SmQhWflwu980cenZIIuR6BaKNt5OS8Q+SeDr6zKezgQ7QWDibKyOMbvbL0juo2OqTZZzsU/YbwuleGiH7YSWa3RDZiBWs4kr9IasY9BrY50MxumUpJcyuX7n+3qT8r505gVYWFpy4x2hV1blhxYtFS89lFzce2kZkPPjog5s8M8GhCa0e8n5RsUSd7XevakUdfKFORwbJxxkAqbpL+swIY04vpSz3bLJFqJq/AJSiFIehbxGEkwiEQ5fIdWBS/WLL/1BAxuA220oCLZ1KX4ZQN+ny8QVUBOjb9f4jbgr20D2GqpI01uvgsRouE6R0ULZOkY2MTNvXe+MfMxO8ZOyVg2g04BRe/CSdjKz61SsHZ1liAgbjp9bImf4Oe/Qg+r2G++FI6X8LVnTSCaLGYMxbndoeJQBBJx+7NGGGl9U5s1KBrPSU3t6w6ZXkuE9E4MLL2naOoiBlXUPf9FldIAJomZ7zpgK6WM4TCeYpjKxEC/Si+dGJl7C4RN9RpFPU59mayCqSdzkew73rwpR/vRWCYNGMQ5cXAZuqVEMyWynIb6Mq07Z5OokRythskVFiJRjjrPEPCd4B8GWAQSX8OVOVfL52Q6yQiYX9uv/E6lKTnPfIR21F/IbjwXZU0k0h4sXnWaWAWyFNogHeWRWB1mc6i/QELFABudZ3LKTPvZzHyEAEsi22y40g0Pk+sCtTrEqPU2DB5+fnCk2QwsxAiHKbBl4uNCJepN5twz/TwrhItmFpyruXgH9C/FMZeNzV5BAOGMslpWgEekT6MUG7kwxgwNxYWGTGjvInQlcAxMxPIqoTFi0oO4vFJdhUvw90aOQ5K/SHulSuPRTtNt3ZswyIPX7Vy+qmIiJwp2UjOO/n7tuReSzuQ/V3Jw4OPzQFfzzx41mYIeGJ/gN0eB26nQEafO01UvAmprs0P2tMCoxRfHx6G8YZUKNcPmAVfOWpB9CmpNwZSS3n3WHHTPoUTXSlHhQwZlvyjI+i1wYlEThlwd/Mc+xyjCdP7O6Da1rrDnIBR9Xp8leGa8hIil7res6+f0GZljRjo+7w6+Nfb3HwvL8CyKdzlPPPCBETmn9OiBHKD5fJn48FpH1uRZwjTd+uPnCfzSH193FJsFZjFdpIPD9NSobjd9ADMQFdOJ4+qTvbyNy2J4t7LPht3ehJJ4J0HdmLvxfxVDD+PubCYFqJuBqFQaOwKGQBinw/mdgnHD/iJ2O2JUooSRuUkexIxe7QuB2GXvDHm4WY8vXauPDBXv1KeRMfukO4vi4o4Y6AYc/56fx5m9k9/T+0zRiaveXK8+aTmtwfxotnbO70e/ieSHgsXnxltuP9mrPnMlQM9H/1JfV1Qnap39vBJToH/H1nZknsGY32RNXCvyl7+sIlApLTYbvZDjuIu0zkToOU1bZCxuMnvqoTE3u2waZu6Wv9d6EBbbEZJbNxUs4pHmtT+nptITv0SmgUfRkHyMoUuNbttMCedZ0iZzcYI5gleiRBVEpu97Wyt6dJaWTmg1zqGvdfId6GRK5Tb7ZbVE1GlwkWiflZ16e+sKAsQZ2g9l+6ljISRL37MGddpGIWswlTNgjlJif6g6aXn9958P3iyVh/dUwMCteXraW8O0MuBw8I/gtWwa+FFG2H450guB2kaT0Sf5USX+2ZgCT0TrJR0ubUAp/UJStkLgK784LmewOZfOfwdJ5yY27AxPGh+7jNiHrGK3no5q0aA06z+OVr/ixmdZUrRDqpUk+HyOuV/ioiGiN8WHPo5KIM9C5thLT6Y2baY6IaoOmDvtL4rIGqP0RUW2A1lRPDyxUPvPOQpUJy/LoOFzdnQxdCge4J8rS4qFC9skK9J94FwOXW2glYpkyvS9rOjoekUVkGl0zEiQnlFjwgKsoWAgmNJUXcMlY+SJYPxuC8+cQGqHi+yipewuVlJ4NgmRGEnvjMKHCAhXtZg9xKldVGWKWnbTPvvjSTmJ2UlLSyxD4I/cgIgsER4Gnl/BJ5LAu+mHwbQwtYZE3TBCh3sGYVFga3nlmnP22rPFsQOTvYgg1aG52jPiForKq2lRcAYRJ5UKqn54TRlsT8VonZJwr23L3WeyMGrGVq7puIHE6RTviqJPak7rpBJRC1o/VuW8OIhg0occnqYIw+exihIZqEDuHqUsrlI8PLAM7P40SgknTc4o4QYj++nY1xH0NIWq85zkugL82xOwnSsgOIitj4E1BDHoaYQGO5C4DgXeAGRgTSLkzL5NmHPg71qe3j0yNcsIiJ8I3rQ9KSB79ZacXD6ldWNze9MjgRyNgn6JY+I+yinDy5NmPH++abynrhRi/wlwSVleL/d9uzKasuz3KHSx9p3/3fKn+tgh7P7oHTdscuskZpGop1H/K6gZiJY7/MhaHKWDXhNIShQ/4hMtm/yZ55TIQcsPNmVCxJ1z2bs81uJ3//iuMHUvZA2svv06+X/DF10jd0ejqg9TWYpRKwfmA8vYCdcp0vLwkoLr02MvDQetDtjq1banMPY06lfnwwsYYUodtSF5QzKIEyQq/OJ1kAfHlEshPLEeIXj2F+nfrOiB8G/CAjBvQqSLul3w0u+yTREyX9ujzJ6VdFDi7vQGmCKEh3QKH7m0D0AhZISRmjmtDJYfQ5cVY8lLEwzku3Bzkhk/sohCzopJWZFHnzKKFJdZO1oMdUXkT4EkBvnKBTfkXmTQfY+56gkl2lPukpzbJR5DveWHTSH+WrV1G7NncZ12V23HgZwFaGqprk3NvHjozlR38idWdE1dhHvDJw/G+yqe+P2kk5l8GZiWP9NHmi23iSkBeg3f77n2hrGXgMXziRwup4yo7+Tvox61wV3NgALuSjy2I4wpfRwNWelGbuAqL5i5IXF1izyfZ0Ryli40OT20HxzREMHZVytKBf9h3UZOcAdnMJFd8jClIXGxJQ/LAA79TmH4zIgZzGWBXG4sznF0dR0j97ADSEjm2MMrRgAPiIFcYD4fvBm7NUYTYupGUpRO/Z0phYeGAkDZYZ7ASVZVXEecuz0PRbRxkt7h2ZtxpAW9dyxhLZLHFPc+AzRx3hMlsfzdpKaVjjQUgYgoh1cb+ypRVroisKDdvowRFEg7TdRU9Ys1eBg7jxFUWlJLLTdlxofIVVySfUpL2w6PqRlAzf97iiv18DQpOzJQNLco8+GgMkKh8qgFaeNKTSeDjxMa3EObb4xfwToZk2mIiG98QcUTP9tEoAa6ImVsh7XfGHFBzc6sYJV2IE49aAP+sPR5LYs4K5sQSLh8u89T8lhkI8HpgSXbJDRbqLjE8QBs5VLYMHK8VHu17XXt/JPbjX0uczugNps7TOL+odAbTuB27/bjXId/7mhx1lNhgvH9RCetab7LmvSMCtSPNSUqXcxf2iDcqkV/2HD3tBVU2Bz9o8tReYK+5qpba+0orRNsRLU2zfvrtjPht39KrTFL54DGbxEBw1ElTmoHvDTALtOtVHOeAaArZcCV+sAcbAjV9hImOH0n8LV7MOBe6G06iWeJA/bTPYjGn71d+gOSQa2/Wx2tZNSc+aEO1FLFC01VdmcMb8p6P9GyIu2kB2JzbaFivBZqUqSCpUwzqZzdd9U3Y/J4pOo1MZLdL5MUst0D7lThYBg6S+g7fenoLP7wjzuulReibolc3zyJN4EXNO1jMMNbnztwxvCYKjBNjUlg73D96BZ19Y6vt1CxkUkVxQsWBT0380FBi9+8Vb1O5OW2hFdUMW0pMYeM/n+3a1/+ESp3rSFgGMLFl28aLfD0avNxL10UOc1lPJ9jHcLlw6bqoQqG+79Bg6lULSzW4+aSjZqpHRhzZng9Curs92/1MH8hJl+D/zdNwTfQLyQicSbYB3n7JZkVQyHzg3Z5PARdO0fGSg2YvAV3jv6SS/dtmt+2/tN3TtrXVPqb8uqkcBa/w+Etu+jOVKdB+1kk7s9v0ksNiFzidu6IyQWNIeSkPrlOKBI1EqZmdfJPze8qDX6ZOgZFlbXCS+3HIazJ1E15zOEvESuA+BDAq5D86MYvLcnh6PfnkBz8jSohqJ/jJaDz4mQVuL6JhD97thycBAQt5pqIv4wyVbr5QCJQtmkc6jdkx3FEiPe2ESUe9GH+eGH/0BOF9i9HMhxl5qRk1DFtxTIhvaTyf726YquArv+3SbKp8SOejmj+aYIwGy/TrfQM+PN29NRhtnGscntv4owg2o1JZtJCq/+ur2Pj7uDLR9/0/onbiCX2zBNOU7S9ocCd/+lFMCO7h9tZPz13WJgpWLOoN59/rN90e+PJxt9Pgky/TTnM5e7tKj//AvUlZ9bG5wOLfH1v99n4N+GecI8y46lVx/F6/2w9lStv9wubufZJIvc20ss4DPt+u2ocKO4UPfe1p0e6mK6EjG6TFK6gpbJnk8Nhn6jc3UpjJ9JrdKZKjmtZFflRy2EXCW2PxervBx5l5YUMQXK7L/faDukWSjwbC0oMbKzLz3bGSfaIw5l7+esyDqpjji+aVjRdudn/yys3M17/q3tSKCant1LaPXQoP7j9eCDargBknF3ezun9wOMKqaFuxlJsi7WlQlXESRpwmUnhdTy3X0lmFtHtoh0ZlpXNvG2ZtNH6QLSJOzvNTeQiEKlEqUdoMZrSsjdLx56rOcY278v4xMACek1XsfpOoMO38xQirxFh0k2KqeU6M6/S/C1iarLdPPdFAZnBTypKfIgdKmMaEnJoOnDVXzCY7narffCQMi7dylEq7w2bG8Wbw40zZUvxIMjvzGLEVFhorZH3LnJ/qywo1ugaLsleksDso6xK1C8H9aQniWr7sPiNXiEaN2JGDZhTJT3++KdZ7CzXNJvKrsW4zDy7qzl+Fq/RhuPB3ItED21vbvqSQmu1JtPTXEZ6e28di6/+zedS8br/No7d6aUd/BF0Hyc0KsUnnqD2Lifpf9m4YhLESqjX6am+qI6iX++95UaCLr4LWY4Doc8a+jz/v+ao20RB1mRL9vEtnKwJy9c20G3DqhqocisgbvvH3yObVGqqh+quOiA12DgqMkJMF3/+jHv/7RrfPpw07F/cNNzh8pby8ugyc6nszBd4AGN+NHpsJbBGw8FbWu7Zd1D238ditGd2S7NxbvgGtlS8PxkaaBKlrESKjotxsL45/TXbd/pKU1WoXxrg9NwG56HLw61Y6Xnh7bCh+doQAIy7+2pHbk5NL3Xps/xH+866qZ0DGu1g72pFpCKJQaMBRT9mc8emuY3o78mNMtlqw82MAJIDFqbI054RbKvehn/PfuI7/fF+Msq9xbxYWrbDIuV+Vq02fnNK6cq8mbmPHhCUapqXb/QtJe9aeYKv57q84m8Ynft/6z4tCyk12mySjud5hi9s1iq+avOGYC4KblSdz1EettPEgMASmXA9Y7RzXM5vIjcYTp2WZuQmjOsnbW6Lyotuf3PqWHChgXhBXKP9lW6/n96YtA4SrE/rmmJeFLi0jb8wO8aCXQ+MWriHK1ge3v1PM0lU39Dy3VfyjsWpS5h29nufn/jbp+/vpWMZTX5O+jNFX2S5aQWJgRhxXM8lk5a4NoWz2+U2xdxcoQumsfLHR52fbp1NLzqJGLtka2f76ef9BSHeXuvGOrUMT9R0o01OPoxz8ktzII+rDute2c7c3yYWYkHSuZGLH++qYdo8nRAzIt23waOwkD7ahA9IILq+0rQmULFzYe7CuJrRN9w03EoLXaaMxLwgreP7ftIITC7Y/msEWRW71pwgXhFgcj9yoxQr1bJHRzrUGTe3NaHFy+HbBAjo4rtLoHG310g0BUI3yoR3nUt4orV92P4uwafDss0/8925RtvrgY91uS+OYOZiMfepY5S/W9S/rThiMJHw0eDBFMuE4i1dMJ7srNb73NyVuRQCIM/rpBaRiF5v8ym0TLswLvM7PeWVHLTVBDdYuN138vRnY8o8WwHBG9tX0SSebr6fdOV4kiQ83JnPutf8BxkarnWfS9gNXYdHm4+6nCqz3ORGjtpzMSevuqtsbHByxxv93SErUuv17qwgDvvM//6PTx3VjBCoE70MY5vuWmG2l2QmmKLNMfK42kl/9LEKjtyO6jtUr7KPu0liUpFwnLvAJUAMjeVFe3SxvpqQJ0PH0sSLPLEU0WNOeXgWCSAt+9DYYY9zNREALl3SHdJ7JA0FFczxykP8rZggsyP9uTYe5SIdXVOgcAoMtmRuY/sJDnCSevQhTEi+lo8BZjsB0glO3E9nKBnNwXGOV3aZIgENa+NTUKuWihRnAye+CED6k1BwM08OD7rMEVIWo85qBQAzz2YardUbx5vl3cme4zyyZqTypIwo66pC3MqJdFCNXNwPeeb7hhOInC+8kn/Q+xQL9GWpZoXrZZdn8JXmFU9OkxKc4FMwzQ7DflBziufDrVyooKwFGUVPrxbN2MyWtpqKpjgintuZRt56VGTvmFCRmihtXBBw2HLtg1p3oy9RzE7vjSUPGoiRcayEQBtMKKdfXuQOvhzaXCFXDstC4FU3jbGXp0fFnd7St0OWatxCxoqdsygzrzVK7lY339iQ0C7GZC8vAtjsIgJZeOFuo5s9Dt0qXgZ4Sl3onnyYjdVekpGexQHPB4ZoZ35jPfp9DZ3kYn+xZaQUIAxdx1NX/SFljsWfdDnZ1IG7JsSDc/oaBQrjich2eCgYoyA7kAnnFJC1ZaCUf/0J4n5FJNH6Dm/ymf5XA6AxxyBfChBIe2Y/0ltQ71VP9fT62jMjykGZF6aCUaVm2rnYxQHJSI09ylIoXV19ebMznLvCOOa7WttIUIgyM8lDN3LN+rhpADEYlCY8eX7LzpXxVi34lOi+VytvG5zsBK1KHvbAskC1U+OPdI50E03jreWFmimeCyWLLNJoXQGa3y+4LgTR3M0o8r7YWvAxUO3LatrgZvuravm/THfoQpRK0kxD5Dbfpe9jU/dKKk21GGVnNZ64Zn83GIdsOv11bKNiFgveGpvI3YhIqgjlrNn17ghWCrfJq1Sih2tobt2YI1vEc8qr2H7m+WLNwRb8ouD+NyrKytESN6pwVtnwhzvmuN2u92fgrO75y0Ozm+C974CCMc2uzQEDdZYXmvnfs0MCOHg3wCkvCvnvH/0iyUD9qCmzkYaihwlVJ16Gc/dY8EoLz4zrqROGEGRN2RWgA15xkdc8eQLR+Xec6v9MqtopMNZ8TiZnMmI8Jsv8sdtgGST3/fjLoLZv47aV26qobox38aE604qHnKmIWci8Wf9v2zsz0/Cp1N1Px7fEmmHz8Y8K/0w/bW7SI62R5Ncgs9yYfUpp1ZpM4o/xo0PYtf5/gJpobglZ0ysZDnGhST8G7/x5qvGz4+uTBcfTrNa92DVxejCJyPySnQ36NH404/7j2zsWc3DwVR9lqo6hCds60NiDJ9D8ep1VQVVBrCe8q3xltu46LoQ+kcrDS7T7valt+h416CBjUX8exDXZK6L+7nTrsBp7s9N8fydeCWaB+NyclIGDPIT3GVy4OWdmOf/jQoun2Mb2ncCFeknlZdtzjdaKm6j6j85cf4KN6W9/GrOiFX2j42Wc3d7R04ttvo7yryMxyUUi1dCzCInyvSl5Y6qE9SS20rxfK0plaS6DJyUM7rWGPKrQGbtUHaXDcDWBEXuA9+wzio2xA0FpdS2wz+wGw6jjq8bOKTaT8B7mk534t6amMXsZT4hAUJZeXJr/xff7gzL9DIUmfaqbz0Y6W8Q738ISLU+r/OXsjH7x3Ty5cv0rHqK7NDKO4JC44fqPATRboXaWSZa+rnMTqCKmxH89KZn1vxma7dxzRMn/DjiT1SPkNtmMPOHdsnpoH4vnXv133ZrxnhlF1Gd1CsFHeniOF336OBYgNGRDcLwS/EA0/d3Q/+04NwqTJj5SWIDQldYfdd5JLvWzZ8Jbk0OhTGax0w2suskuL2CfOuU8tmhu8s7yG3W6eq1qVazDLiQcrDvpeID2Mv90xhN+GHs5yj7xDnHaEbH25KwGeSN5U02V79CtxS7aVI0ou7Skcn+z7zyGnioex/qjK3DUTO2BForx3VXcSG32rH8zJOR1r5+dLZjXs0LGcouFJPXBJ/Wi88vKKqWm0k8GtW4xMP305kMgetz/os34XcMY3221SX+sS7nKWbSrn3ItPl/eVnfuEfnondGoZqKrNokxlE04GO4lC42CHq710NUdiwmf3xHMvlk0Xw2KgXLEbWCFKjknBrWjsY5K1U6bXLWHZWIlWF1NlnH32YjIrhx2H0c45qj2m7ZWUKH4IRsNiCzNPTboSMwPEKz3I/dc3WW+zfWR8CxPgxfsQkScZ6itwq1mMOKqTn21443ga91d5G6+b9IXGbXy4WeHvsflETdPMfaMF8FSFOmo9FCXJ7Mi7wnO0wN0sgwxSkm7nzN5XCakG+O4oQfIr/pKlhbbKzGI5qCSM6gdSkggY7WsSj0xZARAOC6L+3mQ/gwsgeUbrmPhSGcwwqeOaHWPYpPCQzDuqv/3ztF+/ghH3b0WPEKWKToC8yhni0JBQtpRyb2+sDtgoB9gNaaz29NF2BXhBa0w4g9ypQq1dmqbggUvyQufUXu2BVc6OKCwSb8oMZTWQ9mNiRu2CKcHly8CWOwZCyELX7m9CM1pO8VRTodoIkoaVuHbpGB9DtrUpMgILmSEOM0DTqyl6m5n+hRFiR4TbxS4mUhECLQRALByh6w4tftxZlrWSCqIMsLKliBWSltuEsPNC5MU1TVgLAqJnFFkAnAFMgqZodsNZwLe6GeWB6VfGeBLXd/Du4lFEI04sWeg0MYxyMupdXHG1UkWyzRUiUwSTpTLZZSv5P0CLGlajHwOm4TaPK5QHtADYCsPs5q78yBELwQSFTBdj3XpWJhBXqhqGbsPM8noyJUMPTQyv+LimXGs0FrPbp8qEDAa/yu0n0d1h1kmcTl/h110zldYUdTsASSWnXC9ce5c9NH3W4nKzkqfE7tvPOQKp4ExAzv85BVAeqAO5c01q90nmE5UNEStLwRj/agl7TTzvx6RnbUQLcWXYxqXgwuAgxlPr9B4EnLgEWbChpA3EAkLcnRWGafzu2M9InVAffLUM+C8k2wxQxjzso6K/2SUJpUpX+07wix26mR8UrKXG0uD5Oy0blPAuVmx8wc/gT32OAh1bfAmdPk17EC9kyg5daiARfsmzXn7edTmrP4Pzqm2buvtB5U6tlGOyNSePvJiyrbtkmz5W85Urctq0KF461a4n0KI/FajPjK45fagyzfDs9rFdkfI1ZNHgUJsq460B4bYV4qCp2LDOQIhSZV8GuxX0xNJMFx4LNvaF8iLLfvAg1d7Crnz1/i9ZLpn2gIqlIwcyGAygOSkvU7uqWtWGrn3bG3nbyqANYhJjVn7y1UZaodbvHjpa5jkmzGF+++q5N/v736vcHJtSHpjmTn4iDlyS8I7lte0kWhwwTOjziQQbCMaF5ZP8/j2BfZey/SPHZenZD+Iy71agAK1cDu7Ng31xe5i3VDzfH32e+hZwbzWxAKNGNBG0lm4bT9nuIts+b4k5clJLv6a5eRk4TSjnaGNJR2qe1uz74fL07xNsQO0rnZlllbKrAV2xa3fk9fhAR+fnAkouCr1juholpLI5OceSspwrTMIDxOZvLFtInacfW7rVBhKdDx3LwP/WOzrAK2mbzYuWbu7zBzlh6NydLVqCOR42oXv64e7GrvETerHNUe8PxyH+uwQnK6be+Z8jhf97xLjdwJSSJ3ztZgYTDj07lHsMMZtXq/IB72/QqsrOf9IrTPX5LN9Xcdz1guTn8Mf8khMtaZqq33PWRhmisCvcQjq0K4ZPtMd7E7KjEpLKTNidIYgq+y8nSufD209d/nBlTS1/QogxXglFSc+7qOpnDdqTDcuAyjgznfX57v6zt7YMz5y2pcVz4ExPB6n6UOflYgQ1lY+1cju72tXt9nzeWv3NBh32sFieQ3GP+vOwZxmyuQfgGsyOXWSjaEgVOXkPrbM2rx1zqvsHfhgPjeJmnk9cGy/B/2WZs6mX6h4crA1d6+rmHQYpq0rgETgP3nRdmO7OvZXqh4Lg3lHQWCJNWHD5UKnyMM6fSuwNIjbJFUYR2cfbI32LT5vnmcQYfUPDskhSruf+AcSGf1iaJkEbf0BMH51Xa8US28blxp5phtee5Rtm18PCjPFJ9Qi+KflQaZ/hf/vqKHrv6xEgvPV4a9vif9re1TwoIHtFAfEakxsaN53zuSd8tEeU9dHitqqPo1qmXHWGF2jffXlDLOpH8tSYHYsAJx5Mdz/esRqKmdj6Im40YVYy73/9aOlhTmgA/J3101kwJgaT/KyUWl914q98hwv9XISxLQimZLOPFZGD+Xtu7T3Wh9iQLRpfg9j+yzDclx9hxvbW+nKvoZq97qMVbe36DkKyZTwXuwyUhkqlpn3+LVFxKochKMwsGJ5EDtr0wu/prVMxvGOuettb2UTKaVgMFscKN7mARS7Zfzl8TQ7dvYgsC7wR+yDrypl7v+J0cmvDVJm0eHE1+eWapVuf3zpdSInAtH/ekn80dZJbMxk4tn1faUVD/umXM1yyPS05RysW3K/wj7Z0Ev8aP66BxgW+SbPr+p3Kmy5ubEBqEKp0QpxUdQhTJUIwlBOvzCHOh7BLwYAlOaSLAWY7ebrBhKynpGY0pI+yKYE7768DMU1ebxag066ezy1U+AM8uEVd8yysaw73cLfhCy1F52aydrpRDhU1Y6OdvhguDBcYc1Kvq+s4sSPNseoQJ6mbb9OWNGTzCDYcaOaiOtDj76DNBhCbOpQgyTKcC6gtWgCh7DtDPTZdlg0o7BPPyv+YAHrmfjZgJpv0Vi9/q8smn08nznIx/o9RKGFVkrlxjFGZdMEHABtXf8mJkfDOGy1VQN5/s8vsYjoiVFdcybZUFfaHKHsf4ktWoycyLdFY6k4OSoYumYNSrs8pc/6buwZLfpoHRzpO9jDFuIeAPeJW/coC3X35VA2kdFsSgexj6SbAKbqBEFY0uojISB+qlbhDPrjD3XBdORRrppD5W9GpUqUh4Z6N4rowY0QhDk8HRGJT3VH7rmVgA+4kwdMRkyJfBriLc6VcQUr1MlBZgILbxcr/57wbHy+MmuQu/DlnA/UCZB0CwTNkNyY5p0TB6JRlnKywb+TNFLrYM8FcOK5sQV7SZMoiy+GNPKmfmhqJlphCkE3uR1RwkhrvrIwCsricQ+qfXlEtXSJqCJDCXOXTiORdvMhbMWrXDGbEP5WNpcBmboUpeU7MlvXdS+1w8xZTl1KWTii6YnjlQhp3GXhgrhrK/JUAxWX9qYzbPTJUNu+7/z29Z+bf3KueKEFMWweOXf4zp9YZr43HJwrZP/hT4+52QXraRD4KJVc22PtpF1ISYSCqQkc6PpTxIajl1gCV5qrubvbagc22aR64D0IAmU5MUqaYX2YTuh51qhUTA08YpzMWDuyNs5219R8c2v+jr+mhaZel6RVATNGeQPXTiAOdM4fV/sP0t0zvfG3/8kV471Ym8vjwkeeRjl5IA1HaB0J7W5NcVfTRpG5AG0rzyNJ9ifZbbZSOMOBiIccu3R04Mbrp6jPS6rdbpTdq4oMeaADMO00n8rAL38MR7W+KwjnRqyp8WoT/sYj0FbHjsefHoeyc/LYTg7F17ef4a8YOe2U3P39JVQGp/uJR8MRU5edLFj+8DFgfc4suvqpr1XKFBGITSQHFJrdtwnPX5yZPLUSTfx1Xq++wtO6eXb/1adfxVll/nR60KTb4OEr10nkADabKR3awiC9eaHjdcT0bONL05syTHKO9wJjGyYnFt6vsmKJT5Oh9dj8/7//nsNeGWY57M+cTg6mysSoaF3DQ64Tr/sdPvG79vrFQC6LKGFdgxDYuPKEipsH7GDLttGyt6L8dkdvdAIo6jlvW4NZQHyjdcfw/V47lvGNvr85HlngVFmibnTy8ysZM26DnX9e8NwyWM3UCZbbiDTAFL2afMwQtX4OTfbQ/sdx/v0pOiYN9PmPJ+Q4rohKfnnYCVznL0jO7StvzWF4bfJrXNH440Cq+DQudnTg+IZMDQQe2dWgsA+QrzWBAb110ZjLhNXJasMlph5u1Z8eDe/mUEyVRRKo4nRrDxT/bpJwQb7UsVO+nQIz9PITsFFF2yIUNG/ii7KO6puB7XAZ3cJLe3CwX0XL1bpiGWATDPUzZeVNc1akmCZd0OLg2/KHoRXSRVUnN5RjulNFhqLS/1AXqERqx6rt6nDp0Z4O9gvWW7hh9+2k/w3T01QXoGiqdlc5CwWRDRaUvY49f3fqZEXkAKaBEOaEEoWkev5/u09Pwns5y3buxOej1Q/o8WNqXj9lvZ6Bar+U44HA5ZkZAX0p4MFZN2n/hzP6glhst11WoVw1dYGHs3AQRLZ+HHi5/1pywOlv7iOiXp5EYzI6Mx9b/F/tjw37a6HvBmrIs1JsZyahOci5++L14f52OSsKXH481zgcZWapQ5cZX3cwe7jn1cvpWmvKc5W9dsMW3Gq2178ip3UwtMmnmfsBZlYjLn9NMz4ABc0g/dolQP8xKhWM+rbNs+xB0CdytnbLqwVSqQZZyLHS2CVKPMuBhFLPSQ9nWkYdqdvoBZ47HhpksiqlAgmhmckbY9fCY5CHm5s6puh0M2SVEhTG/BzZbHvKiWz/ziXVaXZOPtZJnxuCKvc/llwR7twRNp9+3bhpITPx8lvCidnfgkEOP+wlLpvVuHAVrpxXGHH7yrt8rstNzbyRwCj95qhVmtAx0FNKZ5287xmlTWOmjURDfmbny1fkumtD1BmfUosmCNDvyQY7FOouXucvA44em+67G0oUuufu5kQnc99r2rOKFz9JtT7peudwPWCC66LVWdkBVfLJW0WmHTdbqOIOED5FxmNQTtVV24rgeWk5Af+mP4r7W1cVa12XN41SdEM658I/3D9pV3/XvKWk9oypmdDHQ8GhCQ7QD0P2x48a2XJt/vW6hxtAgQk7LmJBf4/C5R5dWTJOPdbExkZcsYUb6KaycGJ7Mhi1UdKUyJP3rC69g2GR8GZ33JT3L7gyFVBdS5rfPcq1ceaQEpp3GdOS4l4wSGZOO6jr4+fLHHgj40lnnKHt/1Phgnkb4iJ1fmqZZ5kMwjUxyfFsh0oozKDXgnWx/tg05R5opbUJAje+ZrNW2QpWMWtNWLBK9i8F6C3kG7H5uEXUAFmYwW6jtpp4l5+CWDgCZtH/C+u4+ImX9y14QN2xzbAOr52kchrt5RuzDOk5YfBVCcVf2ZuJzNGy1ZrARTuJU/nOy36VxT7QZYsgGCJVxxa5osVmPfmkyM7FLS5cvYThC7rutsBTGTwEgx5lJ5m1oIe2VTJlQstgmzlC3Z6Ty5pcBxoIfzQ0TghaWPdzj0SRlLQPixZ/3+IUI1DuVjcywrK+LK8zkKApdZVddu7DYWAqmZyc3jKjD7WN5gd8aeWcD83l4EZM4SImON9uSOoN9tGQBDLdEkRnKFB45bs59nN94Ulkr3g9cUL+DQmFTR5HyEmR8P/dyiHGZDbH2iqmQhuvAlcJBBmIzlHSSg/MMWLGMnbHLAEJWslknQI9MYn9Jb5UM8RtXaDaH2JlIVPgl6vIay2aUOUB6bXdI/4rJk5f3vSL2lxHKFsbdnBMw8kW7ZeCKhYG4brznz0m52FvVBMbqnZQsWSBpJdMJ0EXl65xFEieBo7MMnFxU+KkJQmOaOUPtmT19WW/P/VbG+IUoC3RaP3l+Dz5/miwKErF7loHPfVmZOVMD4h1sfuP3L3ew8WjhiuQDlCkdaVGvlGXGykoK9DAp6gjsl1skNqlx1+fWy/vuBf960SxecB4dNc84v9P0ZN44gn/r24sgeVUzxeAvmbaybpKbUiavdpi/El/bd492E5Z+6bX0JhWhR317/rJWbAhVl0GLb854/NT1aXfLjQvjhU76p/Wpj2GcgV9JR2DKEzcge/Tp4y2F9Rayy42bR6zUo6NTmmZLfL7Mrd60Ng62+PApUyRQndCpTnZ4od584fyixOHIVw9k5h1EuaTNdMVMuwTa3MsXf20baM3jFLbf1tOLHqsT3uZ+5Dm6qkcDgkv33UtzvNVhDhhOtB1xbmiCGpZlCUIhVKpBax5FDDdDpXOuIHjKzUYx/6GLyfSZ387Weq7uJpFcs0lbD8HvWHlx3um76PGqz1vqa6kfkDdsGTWZL9uaxLHR6gmY4f+Gjn48+2Das4tT+Or8AfSJskLoKm17ozoB7Oe/2Wr3Lo+8ga3LAa+mzz3uwEKCSJN+N/N3j32BhLf6rXr/kUGfFmxogkIcviIwwdkDry/sMTgdNxsttbBShZqs/Xjl/LorC8TUAcH0ueLuYWdpVIvw7BK/HwrtH9E5+RZ2eJtm/Rr9qqhKq8qXvSJd/hVYCFT8w+jfF1i9CcObETHtP5x+VMAzBDBd+gryaEC0KoNe+yojneB6kMqIuc7/m17jB+qz7qFZxQum48XY7YrelscJMq9Nm9++CrrS2qFpNqlFb1Pmes553/40qKf5POuClhUBcb/TPqze6H7lg/N3fHf9ynJfBpBufYcRNZA4qH83ieNqsTX6YtiZW14fD27dAa8af5BAz9km7BSwCL+EmS5fqt6ethmxzutc+glm0DuseTASLUlq1KVK+WnDGTt1z/mSSQyM5ZZ879whr5u3vLwsYIM+qvnWWfBE0dKPNoyQharIvX29a5fi0Yt7Hw5nLWUPVMS/V8rQB7GUEMkkv9R0K+LZ2sXHuzSDD8dFJ4Chhi+13bpuGkL/6TW3Wty4HSoI/UWe4sKb7we86eyYepx5F1hveA2TyuAXiRs97/51tX/gaIgsb/3mnHVpmvZJHtw6LpEPj2iLq1/zNNt22B3VPGqfKuE/T5QdaHXWVznmvYaNPE+kd8RzT86SzxT99tcL+pqFBiqCEngmIKpQSrgtIn29YyT+jTHwM2nv29NO6gdIXFzrTKmy//m+nbNjcLf3VpqCLHQHOXQaJekdzrnv/iZBAL3eJHpkNl/n27SYhCovO330enTVA2INoEKnxMPjcd2fzQfQfTYnD11/E6iRILmhPkBJnEOboWBTR+9YbPKO3Bp71F6gkydkPlqR8DFwkk9gYELogsYGM84Y/PUrivpEXrNpVFJFV797p9tlCpRm5TAJh5jR+b8e6rnf8GhdnVQ0d7V9t0s6FzoaP95f3RD4nAb3VNfbts2Fmv5HqOSJf0mOZoDXx7dh4NxCxOjZljXmWTWiansKxKHYrF/f68W23SdcoSUbt9n6vXSagytmjKv1RYxzGvdqKQkY+mSWQ95D+3Ll14uGub6sksstRG4ginusIyvy1gBlVfQRPa4xQcbXdz1seIV1JVNza9vUgFeYCW3rjb6RKKKRurp1sxk8oUky2OBodO9R7+F7lzG/CbMTJdLVz4rf/Gc6ZA7qvlfZFCdaUTR2xvuE2YQvDQ+snuI7rgPNCj9BqIioJDmCEZnvKSTedFXhxlH1cLg5goIqGYsAoizVTKR8jB99vEDb7VRBkE3mSc+L384rYxaDphYOJGlA9ZvszDydqD/vsKIjkLKYQjUTIVTKzAgUUnWk+wHtVbSc0ESdY0AULFGxyRFkLPTqhNFy0hnUTYBvmyisuptf4yRIjrl2RcJ9VNJBeI+aCIfqMpp+3u2prVVnkp7K9iPYU+OO6QDsEie+pLlNOulqD+LVnkVB6Ix+myb1hNbmFX8mIQvCcD1dBahWkRbZ/+Wc3KFbw9maZ+onYqYz52xCDIwJb7JC7qO5EH2gEtk07oYCw+38hNiEUQvtxD+sJnRcTUO2GXfk0LRJ88lP0xmcfcDUYNYqEj2NVADg7jg5YUHinsEsZgwk82IHBU5NH8FGuLc2N8PnV5iKJ3S3i9LAVS+8Mzc25zpRdX64B1dFk8WvIfIidfWNz5E0pHIfuOx79/95uWi3qoAtW2lcHeCeP0XMLJyVl46B0MIKYSN/hZA8uH5ouKP8zyVw8xE7UYxCuChzDw6BXZIrX6Wwj2001Wbz5JNcsZuqWNI/rfDRaWclkRZH1lbaaf0iUiA/3KDfFCuCqDgzcAHKkyhJ7vbaK93iTpYlz2j5ZxPM4DxZaaCSm2Wfwv5SoIGGYmuQfP5iUsVAVlSKdW83JZ+wMJIyWboMrLJYgZbQuN3cPPygeRNN28kwBZOZ0lNNJhpmFkEmtVuoyWm0r9BWkUpynSKF7jGdRqqFd9hrLQOB3+orTNXjvpOJqez2TJnicJYhz/7Il127TG8f7VL4GlqvXbuT9kig8zK1gcRn9DRW/6Ds1EHg3rKU95aB6rPTDYHNi9hh+/6QZcBo78Otn58g+27Wp6PaVhWrZR7CkM/UtNz/XmQ9v2nz/poTjsWg0PN2glvCKo2AbB2EwdxMhXx2enj/S1t3kd6ArBlrxaVmunQGF7pZBnE/pO+sbIynt34nLi7Ifz7d1dc33GerdyWuwzKWTiNOLw5dg8p/vopdEmbjVrvuVtz2oH2rxBOckaxrtzExI3YzFfueeNm9ssw6kKbe3CZpcxj8KmVZ7Nyy5cdGU9XzyIDdziBwpEezKHSq+eHx9k8lf2+5ukemo3oRpodkLP7NUk+kkbh/NZy/oiE/c/rjzX82btSoPGyYnzwCznzFpS0Ky6HSg19ffykycs3KjrvG89bNiocxoyDnu/ntSeWgHTXtDslBG+GvZWu4E+mdSYTYV1u7PdblRLKtYtqaOBOvaG/LJbSIIvuTzvVbRgyP/3NLNv142gd2KhMAPAKYYRXQ4QeOqhMXPnBJu/QFjwbcwKuvzIy6G/ttR0P6/urTrT2n7RpH1W1uD0oaI0+jVB64hPdo/7asXDuB2Fl4CeV7BcUhTrJyeofbD/WVduO/yLZ46J4oPWlK6qc5/tXhYRywKe9k/4AdF15jlnVEABDbFhLa0LAZKfNz+BevmyEa/UyY5dZH9B4KspM5g91euQwU1+8vOiKq6rDSJmxWx5LZVR7r72y3aCuwfHzc2zHBnRF7+cPlkjQP7uDsnLH3gV8B3LAH2yZU59v11AfEFz/g4wEhVYsuOXq8b9DbzaQNEzRuxqTpb+CphiEUB28YnNF9F/X7pCFYoH4ePuTfLYiVDnQR64Q7DOOed7kYemn4lej9oyXExaHH62ZVxdXqTzgv1d5rVF/4m5rfPgH1b+6YQGa7Jmpjm4KfDf/9ftpgy8J1VVFaNGGwPUaIa9lu2B+Tpfn6pM10fpA1DRj4hjKTtEr9sr8WeBJijmy0u/wjV5zz2HbsQpvcrEYU0oglNZdQJacQR6tXq5nNpcRbcGtdeCQe/jPz/HB8eqvBqsg3Gm1i07CfiKrheAORvLwow2IdMdvpyavLhauSfuFe9oOBjE9/0y5uWXr39UWe06btTcgf1YRTHBSHnE2m+7RFSsJPa1dma1WOA2odmn1WZIFcOkbyPrMG8vWmTb5YhMbQZyC1EOnh8a+7bK4P++ylWOmLRGK+rCNB4hK7seXUC9MTDgez4gzxZKN8LEky/uW5TX3BJCH7Y+6rd6ZVP0SiUPloCu/sh6zc+u2G2wlOHPIyEEMWVnfRH4UPu8feiIs8DawZvEZ9Hq2zIPH7vGoXz881U3Ux75LAPhZbQ8A2mKuiv7v+gBq08WpRywD64Ya/P/vgqfQPdlc3e8jneLUEz4qt1Cl0dPHqVlNamXTezzkncYOeZF/Bm/dVA4vFptvF2Ci7grSjaq0xl6DNMFiqdFzxKU2wwUfHBxq3DKSm2HkgPNZOF5G6k+/FG3flHCoUtdrsd5a9PTbLhh32u2t44/O258aWwW/Do+p+v6Xdi9rRc+T8eQA0hsuN/6YoPlaht3BR9z3KNMup1URFP4i2DHxpQLwpuF/0IJ5s2ODZ20ysLxYrj5Wj9EKeuzlc2yM9tW3w2kE0yXnsW+vMuBvU4d+7PVnYkZWkNVrtGNKBU8zkN2FIvWdS+22udVLciI6rNBBbGK/tfaKJfNNPjKwk+zOpqTzPWw3uHdvxyM5NNykJQEaQ+exiBWD4Ihp3LICYTu0K+Qkj9hcAAaHR4UIonLwKJCxwRrUuhYPcECu+yB3J4MJlEjyCRWQ/NPPn/ypUC0K2LoZjE9oUiq5dKkHRdgo/RTYKHg6ynxlmlEv41TYlYYUlBnNyqaMm+252YtftMfKczTWY7ryP0yLSEVI/au+jr62uwfWO/bM/OcODykuUm6VM+aS3E8/+sat2dKLfnIh9UjbvS42BA9yFcUcJrW58pkQl5M/fY/wSZZmeED/iWERUglGDBeXuYRgtosXIbsojE19WNlN8BfxDELM4/2dLFSiJRilIQyuM5zo4zyMon0FSh8rOnvSmERb+3EfRsp1Ks+ZiUggPoSK2bNKpDUEj0XkL40p9cxQshTUkfmYCT+83mZX8MXGeh+9bjw8Zixcj7AWxOGWjbL7ritg0Fg1PbhQ36lP0Q0wSLy1ZRAHg9B7cbt9BCgptjMTxF80hKFxmWVfWKmCUNJnhHUpvxdaNJKbIGwNzonTAtcbsBYUvF6NdhgkbmFImhUMLK5liamb7s90X/RclaDgOlnLLvkJk9DqvUH0OUWsyxf9z1UZgTas3QxvVKdOywnoc8nF3GgAtASVhwk64wm3KPSbmRx61hBlPZFgkKAWLt/T1USynvzpZeBSW12NcaoYoAheC+dUXTynjSzGM1N6YwPgO9FJS4yYNMEWbT2+SSCd7FAf0rFW1kQOprAGhRDre9eiVW/G22pJX2zZv/fho44Z3OVMmvCDHzVdd7UONvS8IJqRMI9KfvWuH3I74/04qWzPsjyeeiqsITPvrO/JOQOTBM0Q+KADE+4BHjeqPt5cPP8OMdgjuHtyrEaD3Hmxx5v29+s0JHGDGlCw6mFdyNP3owPlss/cVsZz4Zn+qGGDqEC4f3IHquFPmdmZ2Kg/usqvHsE68FcHRNnydYBpC7c6YWp2ufzTz1O+XNbi19RMg0VQgpuvlo7dbI8JPLoydPoQb9brQP0ekcyB+drqjyc/2iyMij/3A+7m+tVhwTk/NTv4lMiZUoyq6BM0Xfqh8uEJziqyXTmfmhYoxVFn6wdJdZ64a7gm9faivHLptDpON12w1DUtVFPzz4oa0yBxZo1W1LvLok+mJVrHqtIfol5Ul4ezlzm/Qy7/jB7SMB4NYCWaTMSMQwtuMT8SL/zZFBv3TFn3g8RPUId5OK48B/RAqmNEdV7nxMGlANedl+fkte79xLKMMXoDYSfXyiqED/hlefk+sXZs7q/O/CU/0QiE/zzRBwY3wTNNDz/quz7gXQeaqKpsqF+rMfoKz1K07iG3j6UdIZQUbgsCet+h5vPdAK/q8dgOltQ09/GKrf0X4uW3fEc6rKw4OZdutTC9N2HUj4lRz+Cf3AYyrTcL6IWLQy1pYNIkDdAz5UuMm17Vvqc84ZThhoEaLnWtz6g6RMBP9EV+t8rbatyrX7tVDvQ06lTjFQ4mmzzl3Qc1qVTY4jnjsv2Z/PBvSfquBzOjRt9+8NTpdP1N7YuPPhQOMXETnboxKwmTnAT/1Z65Nq/45Ffw9vsNRwmji4b+phTeHXojc/66l8rmEYhuFHzrFc0S1YX+T7iJlXii6CsvzgohKiUZH281gWHmV3nhbmweR3/9Z56CK+XEDRPAWsVzxA7VOh3btDPOfvXk+Wz26bkAQhvi5eK12D+89K+CqwONJpBUUxMjWCWCtcHPB7SH/xuf72lTMr5t4lzAz71SYKIwgyXnlxLgXu6wOPdmabcEiPjv5wakHAjZo3fXtUSr3vLDwvltIYpzVz16DkP7HrrDpOkMSxT5kNAl5SL1xNq99/zkjke8t0fjJYkuogZlkfvjupYoTo5aGCYgrm5sPQ3dCjQrFYEaam8Mzz6XU8tyq4D7eRaSeu1u7yZKQxMcEhS3K/+u70Hk96VZzOPM2HBWcAAVTjkQnPRl8cmLQeerD5OYwTNVJVr0QiBnf/39wdN5xSXV/HL+IiaZJaRYmOMIns+HjaICC4/HJVak5GmZmaZmZA3HiALVpBO7KB8HSHJWjcuZuiDbAxNTEgaEiGpriFvVHv3/vC845995zzuf9Oa/v93tPOphtu52xCYz39qsi/A0mz2NfdRd/rPg3OG7L8RcKl1MToca7Q922ZW4ApIS2Scmqu7pPHyyktsUdX+EHJ1YyJ92mMa74a9OyqGOwZdilhzUsOdtqrDK+7Wl/gLXV/Q9pVnUOWcH78UZKNjxw4GZ7F4IhNprpUNOZbvtveWflt/i9urKH626yb4gEGFC/dD+fsNJ71GvLMs3yGnKdPh22erWJon/ZatdcqKX6PKodJSEaZN4Y//bysUkRGHbaK25Zr9TC9GMlXk1B/drLc4OYO+vICbORbGtVC9lAb0L4OvFTmee+HbBjIYbb6UZLjODfRVUmdkXPnU7I/NDsX3hinl/zqO/LnuNbdRVrTR7w451qhJTB5Y8xanVtK3Ev7FVax7Z/8RlVZFqaQUe9zv18dKuK+lBP2wgFKVL/k+tCiMtr64t7knrWrsPm3PmiwDz0YpnTpmLOSY8jB2ZqpJpwvIfmQtwa3HOooQYs5Ai9Ui9TctC5a2ZhX7Xb+CWyfumScUCvRitnk+OUv0J7i2SvqFmzv0PHMSIlBHcKzAVXGbmooHlu0cBcwW0DfIfURDERMWLLDQDTmSSitpLAPQfQEqEyFKa+0gH8MrLCSH8Bcupw7pX1GyQZEtnblZQzgELseoM/2nwDeGCGCEEVUApDPgKycSf1TpFVJ6ftzhchxdhr45a5YGBBTzOjfnUDuAVRioJTZ/VzyXO6Ye0FOs1hMLQo+QTlBxLRsNfbNIxdomTMUyFKW1x/bvl3kG2jvy2yRtT936IzvwgMLuRkA6ITm9RH4ozWNgHpveKewVRDcEhM+lp8hf4n5eg/Ea0pUNh0v3ho5tmIEl8Wvrbl6FIzW5e4Uvy+EFH7/xhiOcDPX9hLdPQ3Yg+wu8ILfUJaBBjiA+12daau+Bdx7WKONijti9GseGll4ZmgDBtnxpeg8lv2txJmEr6CYTDEnRtxFuzrMu97yleUmwRSXTtO0kDS1psEZRtA6WNqxghNSUyvmXRsv7L8hu3ZCRv+NMfn/BHjZJMWvX5GsJd/Lm2hbfIXkS04iTrYwi+y+CxZ334TQ9bkrSrbajmGWLCuwTXN5uY0M7pvpFi280lNT6STc+6lYX069SdKNCSWTmZn8G1rAsNJvH5Mf9wK4YSJmGbekF4W5qXg6U7aVOGcRPhhbZDokdrvSrIa8dGl8yUUizU3HzKQS47XulMuPOEJkqJBLrPQSdxHR02Ywv20TqwZE1vvA0FaQ06rv74dTx8fWhJt3w6hJdrpIasvfkZYrKzpn90AdsIQaKmcl8xL9B+pw9BYXAd+8tfJvdhZB0o+/RFL+gQfOqQdUzK2MUkxw/dIZrgzpdCfJ6cYh+s9fLvP4L0OBGNUb/1LMbp9WoOG+IFwt0K1fIw8mPIBx7SgcoTLYs+LH7C6nufOXxfCIl/vMbs98nOAfYqbCELDANrc15PHpjLe0krq0yZg1TVXB8+MXS6wCWJqvZ+wiVHlPDudYyjyMzxYLreZYSgkRZC24xONo7GO+t/686fS9hpYwjYdT5qlN8gpqEuwH/1tXxxDnY+pwbwrBJRqpFaADC9q01xqDWCm+9O2BBTnbJ+EX7waraoUqT8BDrXdDAIPISe/enV4nw3W/QfpDqjUyzTTZp+jEVF6SKzcJmvCwe6By4lH7XrTmx6bB0FBIcaQy7jmKbyHOTzq9JjbjZfUT62WKMQZSgO3GA0QZkwCskatYrr3eZpza/0OVt43aj3Ch6C1r1BjN4CY7NJX9aGYJ4mh587uTqI79gv0wFRiaIDH+qDZ8RQfbjljgPQBzwKQqa3xOWbu6iWnDx246yYrePCSB8fTGF7YNw4HXBxH3RP/NsywyhwpBvRRU+fT5NmleI9dhyeaWX/FzfBkzhfwYkz4FBtH1Pzzo1sD/xNpXtV1tgrJg/vpCvSeMJuCavIrL5ouH/1aeUdSYSRubmlByYrA5exivYd/fbl33//h4fPX/MJzFLzt25zPRxjb65Tv1BZTcsOZnl1HL/+Vskwp+qJWvcNzDkOSs1uZWTpd8sXYKnM2zc5pP8uqfR7FLA0hlvxV8sle9QVI97phu04bf18cZFhivlTckBrzRqcv+nHu4y93m0Ew3RFVkoyy2SJ27cXpT98D87YYmaHM7JmxYVYpBHxXjGuP+y1Ge5q2TYhrljqrG4UAMTFibvnz6jPiCzY6aZ7/WscL5bWPGN3m9qgz9cAczLcXkCu1Z+1+/rNz24tLSt7RfsEDzWDzHAtN/dc2l/9q/XAaXmRm37ZMjZB6RDRK6Bh5LfGpamXP2DaSUQqu0sZeIOu7dl0v/ZMZv9nFfFxHQdfbm1aupb8SM/fC7ta02Ta1aMSeigil88GfZzPR62LlaHDu9NBbmddFP3Qox8yOB+rBBerBT8bRzbyrOcMn5Zf+O0UHm5zjWr44NLt7R+q3z0BxE1KdrUv4ffLcDONO7u+BZ+l/zbytq0s7OWb37sYx5td2zB1vk44pntIZh6d9tT3zNgNk7ufVqAypMcr+0espowAbydLBsb0Ic8+/Bcz0DXkdP/L5/iMf91enXffl5zMGt9p8MQC1mqTVtMlVHOXqvYsOR8qnrbp2neZGmz064LKDn0DNwmzjpBDGni/FvGP//FvV/pmV+WRUB3auQzDqGQKJ+5AG2gCiZjd5+ud/+3EcCtv/uupxgNrXl2/H3j7cedr/aFZRczox5MenHfBbQBB+vGaEdsbKsL7nmcqk66Fy/Q9HUqunLgHessdgPJWjKvYQdaEH/WjWl5NPr1WpNh84mGWzo5sfYgtTrINcm+j35gnIYYn9W8lpWw82/nwRBoS3qdF3e75Fwk+eea1ZbbZbn/Qq911BFL83PnxbRvkBXx0oGK1V6JG13z2Lf7mdFIVE9Rm18cvmX9zPb3tt9OB7lGyiEaO4FKFsZp85vDWt8fJPZMtlYEVwOOikA0te8ditSwNLuqt+RevhNnYf62ALT+vwjLfyoh7M6cO//rng8nGd9VDGPg198IeknCf1F/27alxdUp0HP4pM9WPtf97/656ildITQeblq/9y22RTK+BzKz3Fkrp7mw0JEc0rbqdagv02c/u4zMBgDUT5hyNFGEFCy+Ta9WMwJOP94amO/CeILSWBkKQkNpZAZeWwTN180ptlaMpuZKXwj0E7dmJw63H6MfE1BX5DFPya/weB+iQ9Jzp3E5+j13CI4qS+vV5r1r+kjQ3L3WSelDRfEDcIwBD671M7QrYYzjJJTvhsb7PqaoIJV5wv+qjY4TMrtFRmYsVWwg6Ci2bDmrA/cy5XtjVKMj5lY3Y1aU6gWeFTLrKUt0VSKlQ7+JX7lc3E3anlhIUxkoYYrtpH9qV64h1sQmNmhp4BvmlnxLmgV79O6kDACNtnBqgNYLJTKQVPi8z9p9QY4HXyUXoFhv55yJ4kxxG+v4BiYilvBbrHju/KS3FC5YLI/OrlPwYZR+bBI/+fobLLlC6vmaEUyA6q7+SRKYIyLUHlIRC9RgDmdia8+hh/A5/QTcPRFVhx/rVsFJ9MlAoagwW0Mx1tBZY3BUgyeQNYKQKPjmjSaZcTxj8wvCwYy2M5iZZMSO8GQO8incx/pa6rJKCyUlTrsNFs+AbAmLT5liJnKiNn8be4L6PUiRdtzlh/K2cAgjG9bkI/3Rw9o46BDk+uEx2s2rxBI7REC3P9EFs0D7pYTjSIkgiB3MgJoyRGd0pS7Rs6YU4i1f4GM38mHM+cE6ysbyfhOtKZGjhmkBnRcY4kF4WN5ktHsvKWMJeHNQ1FrTPKRpc4NZqF6uqYOOLF9UqdYTuzN/0+FoXLXwFtmCIlF/RpdZ3GoT7RQ0jpY1lSjH43B8PABYwyjlho8603AgYTCtdjXLxT6mdD+/0opn9ifo9LdO6gkU2zFvy5aXuSG09QzocTjb6aPecfbFkzS+dyl90yvTVwi+fXl54yHi5KzXmrDTolbKBlvqXVZDlyupNMQqkLE8hh4xYrA027lPt9X2kr2y9MEJ/MiTozZyGYI1BYu+SOl1lk8dahYWwM5dF0+7ygZ0Zty6/u7oWdJhMmNllGH0QhsyS3Pco8G8MovtaX748NZRJIJlTPeGzTw6Cfr2Ot84jB467CVPbI4xNBxoz9mXEt5xs7LVloxLWs9xRBqlB4oNvS7K1+5Oz7ByP7NUEHAJYavjK6D1Wismth6/Mdlx+py75OoMgRcGQ8p7DSWo6bmS2fR9n/2eWbw/Pl97f7ml+hLg5um/w8B1bLCy46Vn7/rsdpZ6vl6q2QG1WgZljzOLpMs7KrEjVRyC52z/tX/eTPE6TQUHl1b7O/42/OLLn2xHq3+YU0326W/Q1FnyLjJK86K5A1nCBKN/m2i83mh6xBi7veNFX2zNVnj/y/bT93+shl/K6sg7/Q4w0EAZlf6fO1wzMnyIWyEvMCD+9U172b0qstbuXPJvX6aNIzz3/Jkrk4BuRw5cDzrZaTHWT4CniQgS+CNCyHBGZGiLDNrHh32BzqILPyUPv2WbXH/7Q+PgCH+5gp7GsyhKREj6hAPF0dvpy4O7XzH+dzbuWQFFMcjcawFjVD1JSKxwwjhjlKViBl20+4urToXyYUglvbfY0798SKvibaiomoIKbemGaOLYbjx/h8KfDSttqaVlHqh1Co41aZD0H7WQAa3p16n6Bg4+ixY7ibfj704czyZ8q5WjTG5EpDlGYOzpE+avDt35Dd2uDR1nUcpWSW5kP1FHe/3kO3m/pYURXaZ485vlepYPcnHm8qyPITatTGUNnRsrC+perlxej2z6m3lhu4Zchc2XnzDIfMx3gXCtm3Z8+Y8ZtRkrM1vA0KppBwovRm2AvD819DHgSX2xTeDsors6Y+TGxoX8GdDpz3h1Vc1TK1RKWEWmHChVxNUsR27tezF2qrzpKx/33+cus1CpLLS6dET/dsr+xrDeqG/XtarBiyw46pqxJitcpUoNRT6gVUh/bu0rHq07d3zA6NQW6dFtJEnoxYeqOk+/aJa69IkUe/gFXspkk7NSWrq93mL0YtRwym7lx/CGyrobvHKf/ypeNTm18UlLJouq70otphhNs1879fxxT73O6LytJHtCmOtoH/xloq5fvpTZEs4cmD2AaxxP/FSdPli5e410lkrYNyoUcBm0jVZjBCAVY8fSObP5xFfUlyEPaonu0PpoKeRF4uq3nQ2+4pTqqZG6udrLNHPj69AUQnDn871zKakqIYm5uFYkW1L2LOnO7TfGu/2rpefaX4hzBe/duU7OvjiP8m9iBZ7X9F6IAwkuf5PpiYEffAv517rnQShzU7A+8GtHsEJAVoHBBTWvp/Sz0exNKkXVA8U7IB/Ig/0NfvF+rf/S1L40uUFnp/jfhbxgz7sF9L37OqzNwJumF3YeqV70FVe3u5+e7jO5G6vq8gT4vgm69LFsa39MkdapT5fgi7W3C69u2bLzpKVd9UziVtVb74BI3kpgs9VmKw3dm7o9Yv236Sn+NzG/HTQs/BZz8Rwa3iT/cUDz7ICvJgfY2MdgAtj/q8P+pFwzWXfIU675b/l/zMiJxUFxQ90AE44ZIFH/8KyLuztdLzfUmpRw/h49YDUE/BnOa8bDrrzt4RNMsyNlKYwPhUFXTAp353QMRJARjWJvyF6yzK2XPlMgzECoGOkiM2gD01nPuoZ+oHk/82qXj2ebve9A5e+pBUoQ8eOv/+55ppwGdUYaJfb2PQd3nmVLleR0KP2vWJw68vdBrqs4xSGc2+HAk2dzAqcbZPqmA+nMBRqEDN3HfUbti28LI9Yunw9zv3Qzue64sv0DN+9BN88cINYGI9I5eOWkl14GX1R/312n5yHXc8KbUVDZtfKAu8cQNULkD2jmXae4dYrIX5pHbMDCWrpuA5tGRvbaQ/FjJbGNQsWj/UL/l4d3qFs5AF53PlSLvOjkyBxc90fTpWOrda8dbQz5xllHPQuXLp1Zo1/OSrTv+AtDxitrzXq24w/B3jN9n5SDF9jZMMEqQO0f3V7MAki12gC6tnZJMBPJwGSk9WmzWMmssttW9hFhccCTUSa84Bs7/s+tF7Mu8h5PDTdu8LtRxgMjb49UMA7+xM9e+vh2lJJOMYlwefLHkr9LmBfCOL7oR79TyIa3aUoAwC//mIDxsZIaa6wMPaJONbyVxH7MlD5rArITEu5e2QRpNTb8tvpDfPa3WS4GdvofjJqfYo2Tj8CW87MJzK4WwAPS57uWQDFDzGGYjyFNMWBNnXfFITPiqb/2OUSonPGCah2chs4BqyCFE3w5gl7guy2pLi5MkQMEsMOu1FvfjOVFDf5moYj7gPSNflJwnpDU3s7uyyh62b6abrGfrKDEOWjVR40pF6emUYv0k7CDxQSFtYvyio3HuDfKnBND6sX7UCXowAsNAN4Gx8GG+zCFHTDJ7lL8dXPALA0RZtfivEFWG0YLMTtpHe5LgB3NIBhzDRcLxU7Q9kW9XD+epo80YBYm0vTMS9bdkOQzFH5+YXnvVbTeCnN4DuAtBt8J9z9vmZ5c5M54nt2yiPYKLJXxbvElTCnTW08YxCQoB9T1f4n9pc88JmmZ2KTHigpEY0KTqVaSamfJCJrxdLeakzBSrrV6DQio3x0eIvuQiQ1xAAH/KbX7Seqc7imd9Ip9NWZ4Y4QietaILfK5alxcVCgSUTHsTELK7/CQX3yGa+YqPZ6gL4zNBKR38NzLx38hd2lXFdfrNVs3CtX9lpDHRY26AlgWKKT+/pXTNbFDrcgbnU424p9mpaMPseApr2guLpKWLhbL7ntJ46l6vewizkVMd2grgPezYAxCEXwVqZhLw390lEQpoqDUcySeggXrwuv8lOkWUaarHmufikJzFf2aoNiZ6Kmp6btt76dZrheAeBXxYvOdv5yMqEotstpAN9IdFXdvyVwFzV/X+dG5t4HCkK4BmY9IDFkrr5/NVcGmUtCkEQFG0Aui5g2ozezYOHJ1/E9OZTmKcerAfkV6scupdYp6EbgdrSFQbJHg4/KbWjHonvJq6drRFfph3p1wnKN1pWlmLp0InQCBphVbVmS//I/J8k5BXiregzyb/6tO4ejTwqTzY4OJymD4NmAJ/c/Ka3VeviJ0mm+J5EXENiQLbBWMilkAfIkbfwROujSOSDXmdCaP0MfT72uvHnG6kT1/66OfJQof6Va+KPYRMy1BGfQOP8lQ3r8LINu797Puc8qhX0XjWVrJxjvMmd6lz5HfLj539fM8qVcfUjSVKQKGq7jBJ1zTCMWhpu4J7pll7Y0XeyE8bfPEkLtM6ATP3OA4Ppd9Linhek+ljcrYwOCwioefkNaZwlPhOjbCkPtHhb6pV2Gsa4+t5GX9J/VyM7tb/hDNZ+vMH2xuJhpawyg8gTp4dDT//b36kS3dz3DxnOU7H9EqX27Eh611tXz768stqlKJ3s052VaCTF/ZjhhXcXUZi0Nve7FgMsuahmzI3xbDXqrbDV9nohgqYeNPUo8JOe3jUE5OCEoz27MMcj1ra74nO6z0FR6dNUCbfUh7uvVIa8XRuu+SCJxktvPTjhhemqHIJe3+XZiFA4+PN+eNYnHstJb58zYNeMTJJcMLow4ezRO5dnc3IARhDcpVS/vBBQcC1w5fyP3NblS0pnYz+o1uVtoxgCkLGS4wF3dxi/yg9NSJwkb1IKBfmxCNtSOTDUcw/cBnDTyeP3VN7z9/veWbfjgnz6fO4mbi9nKR9Vsb5SY7GPdtozUubClbQPx/z98cXRWzG+WgY7Hsrz0HoAfB6sq5TwEW+/L3lRE6n45TvlOX9Vk7e/LVHBN/DpP+ci0uT6d/5lOSKWIDHdmJ4FnvEBP0JSeeDB9Hb1XyacJ5Pu4dE3Xh7+75tf2OKOhRJdFU+vdy89E4fCQ1pazT1TTEgBke/pMk3fN4DwYo8jOQXRyVrsA0FX1ZFAmDOuXTspnQS1f7DjS97N5O4bIyNd+eGXWwrIdAVwD7pZB09Bs0/ws+PmSxoaqm7zlns4Hg0fPxuF+mz6lH/9kSwA9p6hpafV+Z8kexQmj7zZsrB3rGtXfw3YyHbMeIplCFwsQKkXBjyswntezDFvT2s1rDpiiMT898Hn+hGTxPNmr42jNQvNbPQRuJuX52zzYk3fVNQs4RfODYsDg/XqzqW2Ox0+cQuXEkfFNsEZ5jM7HphTcZHDy489zxelsc5tBeuee0fbJvbeAKCYYpEX54kw4Om4aXzWzauDWxG3v62+F5spKYXaL7QslKr+VHp1MYr7vs9B9/Ilqvk/X1M1avryDTRA1oz6elWOesn1j/sifU/9J7j2s/Ja8Hx06fznmlP59Y89AoiHXlRcP0J12b5JMZ0VLSjZVTL25OcFa9HTT8EHbTP9A/xU7REvfYDdmZ4Rrpy0+MS3UNjnOvfKN3uDwlDNEVWVme4X7FuPAnaoUxTigbG3GsR7fXGN9Kw+4u152BVAd1fsvnsaqoyf6s28eeeAbPJyXrRJwXP/vr3Mzkq2hnBX2I6+i7cuJX+L1vY3CUoRjbwaSsOl0/Ap6Jei3TpF6ruckcaxvYqzYPpjrOmciPK9uCRK8OGNh716JWeuzcDnWnJDc1as4YRpoE/qOpAYgHRMOUz23yH6JAdTpflQzgt7T50rREDNdoYjTtUGq43m33Knn+Vqv1YZWPFWUr4emcUb9VTT+17bPknDdb4JDArOO62orRG93BMBtcQznTaAC9a4EPGbuKd27adalWfWgFKD428Sjp8Ee+R0tp789eXL5ind3zgmeDndq/DSjay+wMy3+2STZd03ywHghGa1kYPRsguzPxq6guQckva4Eeu3z3g95E0WT8fqXTrYHpHqxmxgG2znabVFivp7nt28f7/ywXD8hZPNz02pX1zvyvJp9MKybpLUGY7HdC6yES869x7hw6R2fL7pHQliteySkJpE/fSwqeyieJ3QAaoAgLGUMudQf7t2Iaczg99H2nWmiVjmcCICrnU9iq+ZmEKeF2hWAO9yKSjz7xr7UtvZBdc9vd1i0xO6Fr4abktHFmKhh3YPv4Y4ESK2JzTn4pcIHTI3NlHwS7tkpJtuLdtKInR04JPjCM4yasrR7O1kCOLeYl5BvFfeXCGop6kEOApsJdBpHW0voRfLSiwkdH+TGr665JrMEWd58MwYTdnSQoo3jpgV3ElMOCuOkA24mJDT5MchwhOzSxg/zQLGEOxQjpgsnv8IIPecT2cufzXjahUSjKjxj9YzfDX74/aCnJ4APgjleIbgd8EtPliXQPxb3MdomYDGdpjSa9l/YsHddeQ6QDDdrXHiyRNGqfSzBH5P0/K0ExgGwxBTHXAVaxamciaXwKMHCruIDIdjnjzaAmYtaoXoED2OH7fii3/ecsmjKFgI5iTjwLXv1C8m3GqkVNGWXQKX76Ixs0bLGwB9rgbjjRNyhI5ghAmnSWv9iaQYyIUnohYl2Lhbh8g0MsnQ8g+7PPMKrdGjRELZEmrJZgVRGhbdIn19PpOWHxQr4On0EXren5Zdk2/79BQoME8NSdYPSXsBBJHepvyyUc7sE0eCHB+xU0hpYlTHZ9zci8UvzdD+hOqB2J+b9eDxtFXlDeCOR0ibs2nqEnGldgNAFaQMhdFWGIJUjmQsDZZgDJGloLgJIuYptvmAkKuA7idoxtnGD7ClHPOQrjAhxanU5c5StHY4BpcYxedKfj6Sd6PWO6I/8dHz/JXISWu/faaqZM36tXiaX4OBYS4fxtQIMer1KdL6RLNFiClOwOqClLccSOoVmdw2eKAGQXmILxqkk3wwgjI0XKsLv3yKPPVLOdSI3jgkODTaGl9YJKARFlfWt08Z9jV8Fqx9O4aVueGp3wqRlB9yI1v3UBxNEnFz7PiGlU5NRox2uO6CFP4mREvO7xdzagQoPVq4pG5xxIV/sFmbasWtDmZyZ/J1CvMIYokF57fEH+DtRS2/amZZaAV/rkTNyrfrpQrX4yu21amPRLIv/QkxcdO+obI5a8Wn6JdFWYnvpLkmp956+/4iXerIjtkfur0h8bNpciF2LrZOGYTTVVJH3jaiGWWxXrq2XOAnOHBkhYhR2gBooWZdP7AtZrCsddUOkUGnqMRrYlh+t9QuXtWIbhugh5qIaGQfNbbE6rV7HeewWp+Bb0SlT82W93KWwA3KZn5C7WuTdz3RHQIICaWYGGchvYmXX33+fdVzYFfnvO9ejVDMxf1I5fwQwhxSVlN5n95JVG/ABXXmefvrM8WpYIeXsqH7Ic4hhkfjOs4gYrZRHT7Se5denLugan/ywd49xxl7m9Jh7YPEpDRHSK260DXqjtPb3wUvVEp+9Wwd2C+/5+HVX6Tj+31pqSn4CqXXCf2n/63KzojYlaRRx0sn1zss9dtq3+HNHaj1Oq/YXb/EcRNMb4MVfR7EBq9C7S/swepUrEZyhj3lvQxb4s6j2i476ZXhBmtjym5XRQwX/h6YZ6XH0t6V7Meck4UTY9TV1Q+gWMpGZ1/HujYk79WmnqxUsd2cNzAwCH3crHXE3R2CF6aTlS6/+PvjFkLAg6wOYaRS/eGKHWmfeL6zltr8TLaj7SnamYCMXZWUXpsAt7bDenRJ+/CaBzKwjBtUcytxSzXJV2SjrUmMAnmCK/Cs/Zt77Dgq7x1SS488+/XmI061arOpeai8LOnUbVTzvugbydzImbiBhZyXUekO3yvlDyhkHIh4qlOh4jYsh6Optui4KSGYBuQllZWDZ84l/xzec61XcYfGPw4fyAUt9+QgA0o2aKSuT9rx1B8HlT8sV/dzlsKHP58vsZk+n7o7q6/z6h3HPvkLfJ3/1AUAySRNQQ8oKjuhNBgSKjCj2I+srhJwwqn9X9cRUfT9Z0USk0gZayTmgZ/OAQzTLH/f++e+8BeaedphMnWif9Y5dpypwxqLs6LA9NiXqrpli5ZT9uNmWiURnaOjqP14dO9MQ7BVdRIzMvtCyzWR3+NS93fTa9zR9pY+KMYP+7Y6Dip7zf7FUkvwbvddp6naKap6j3Rpxb21q7WyD/VoiLyal+dflBxnmuvdXdZHjOVPbncWV8lnHJ3xpoFq77Us3xuXL7v+reK/uJ12SSffHBy1qs0+E/swYjmnXVegp8eB9D01rF9+q8GKLR+duHD1wXEMq1gFamxzKaEi9M85qFfmz+7BPVVxfp4z52/Tf46IXt8OevnyRMAi9JM7BLsepPA1bNB8Ju4Wi2GekO9oMGVAsw4/sL8W6WhtU2hhQmfs1ctuXYp5en7SSydrCger7uxQq0qZMnaIgnA2h+DZqLb5/YctwrL1W/Am522WAtTGqFtYtUTijrwQJapa7dkPOrXgTfYDiSYd+IQOgd75b+EMmZ01VY07s4+1Xzta0/etDppRw/aSV0KNGyqUuTGcOaL21dPFl3bqah0Z3VmoVyzdqC/XUtWiCi2J0CH/jiGrYs9Bm28HjrhE397TtsbPYA0UKmFxH9GuBXmXfTyun4mBP3x/9tC98PP/bbE+XvW2gY7tfuN4+0QRRL+CvJepU8dLJFwZ1C7nVLB3tCunVLUHXT5zTcS9S0vPFGj7aZMaQJjNrM6wgLna08fvHXzWZ/2FWj78JjWhnR0f49MQbJvvn7W54Ij7jRDD2nlNPvV3Kbo7marPvlui7tW6I5/zPPpu5N59pWc07rJRgxECTvJQZ/3fw9St7dtez2z50nbz0MJRo720hB64vnPUMklbnMyqwal12m56wTahZp5SvwcTkc6uGX0M09z07S/qqbrvwYeEB3tbX53HjLfxfB8uO6EwyiE2ctjrv7/V9bZS3z83fTEAPtZ0G2ZQ8Z/+pZtje79YBi7wq72gXvNxajsO/+v+rzvolFwHxBsQrunjmEG0DlQz4IeJIZwpepp6BtHctrLwDEPzvZptY8d0Eq/HFRP0WUdW3AF+B06YHDCibPGOdqZnyLzrZkgk6KPMLhBbD0vousN4n3x5AVxduH0qDwZ3BsNS+stiCesZv94oJx16sJjQtvgMC5FJSPLGj+9TCTXTjFbT58FBqdMnRuALKwsFIA7lTndGOD9pPnc2rtgM7r0V103aWcRTxs44nN3WPn7dONeAh17pvCUbtB4GTPWipztJ+I45UTY1VdMJqZe8Xd9rZGU+V8H4aKhpJ3yFPpdsPzLPLkEKZKEski4WNzR5qjFyL7jp+jXFFqyta3ZsElJPcg1Qb7XUXK8o5Cy7epnztWccPmTAAL9KYK+3sclkuh1TcCq9fc2fsccGz5HKAHvU4YMcsMLrkM2rgsRDZsdyKCH2/w/X+77D6dFRP71GolS5vTJWANAvE+ozbV1daPdD9XbtsUcvZkdojM9NyysuoMq7GGp84wawXtZK2u4XAaCYkGVXKsYHxbTqYcxIipPjLxO8Zwm8DYDByuAJ0CxbR2YlgIngI2kz3CbNDWCNcKHBJoJRaH3S+YiSSsz8Cr+f6JhxKyQmoTWOSdwAzly3NIMhmvlgKWeG85QfT/ZoCX7nu5z1TaDzy3oki/k3is0cjQmL0qG+aBq2hCLRLiBImRZDS9CdWqtlyLJdHSBsACt1HABQCpFDCZmXKAPrGbw7sul0+g9JwzioPw1HE6DBjRa503bQXGSBnIWBmRTW5KJdCOF6NdPM5fkCXopjtABJhy5LhMrvmfH2krgNgN2ZWMsi+CZuFiCbYNL1O1+glKVNmF/3XFxZ27SPbtTWqiyTgm2kiUWDJN0Rkp1Ggy1m5U/NGtPAFsRtSPzQWnB3thw4llno2hoSLdBaL+1K+rtmhKyaSl7xo46bCg4fgf3uvRFnaIGJ2+uZXpFmGzuPEdON2NZCbomhPgQLhQukDfZGYgmu6aDHuI7fgKSJyW3QUYndAMRfiR76srTwDYB5crvyz3Jezg8+nBYXzdTiwF3KeYmoFqY622tgaW7yqz42RNmOR8LOJHHE6xUv+71Doxc2gN0pWzCpTDMqimW6KGLG5xQrKzE+0sDk8MmEtbi6+Sek9QNqLGU7TSkFzscfemmpCw+CJ5Bn8Vwho+zQzT2Ai5yTrO/MEL3f90865YimU3w0M1i8hO+j4XsKYiiDGd0LLFttwEJZOnVSmde9kSGG3FBsHSNIgmN6+WuURsHXgQhBdU/hdRwWT1OiQAovEp0427sn5BztMetSX7JC7SnKhe7vCRJ8j7U+/PV72Y+TGa/P226DhZASYVNaRt7ccgjonkD9hfHZ8zsDbjVc5p7/62lb/JoTUjclSlCt1hV1/11qQKRiTPChiL5E2wr0iZcDIVqwoJuloVEHW0MCsut/B9894LPqnvO96um3lC9FHmgYuAJU3+gIOUEOhVwfLvknNPJftzsmb42PHEkvsS3WOHt4a+Gl4/li61LoTPWnlwBsXPlb24FjBM2k5/5n+lSuH3nV4iMba1f61CRIMqUU/6wx+Gd/XADrpOjtuUrRT4yJDVcpJvQHJFXsA5kOU5e0oHc4e0w8VPb6AT6mvSkirfAqz5adwKFA3HVB2dn4jKPHbF5mBBrcqbGK3PKzYqHamfW8V3w5BcWjbXmPpDhCnVpry2BL5j0XOWN0lnzu95QrVynYgmE30Gh7QpbLdm/lW24UE8/STDwuNyAg0j94LP/57hpPsTYc9y1SH6muE4/vbNCy7eJ1h72Ic+gPtEf3Op4I5PhbdIWLPoZxsoteftXvIm53Urrj2nDHK3H5aOkTH8NLW7do6Fs6t0oQhdeuYENNPp+x4g+p2f48qGqTyDpGUUwUe3GnQFl2v2WMU2v2HkzBiZWdHKbrXYf3O6n0fdXF5Xu809nRc3zWCJlCsVxOj3QOdRMP1qf9+NLdo/T7JPwV+cIjmYeeRkqIhHZQDfoSC2qVnHyPYyas+d5T3BWL3pHt311v9byyMrP8rCiXPrzw5kgnWwpC2xFiMqjL3QK21M2/UJU9yI6j3LWI4LadM3gvYx/83y0eT2kl7WggTPTU05pYwD13TG10vTgo7d8Rma1o3a3vLcJtzorejfBRcg0m7xtBnEMxsROnuNd7RJ+PH9J+qoK/CdGDK9ujW4bxyfq1J8+pmp81e5PUGatWNnka7FydPAhbNrKPRu733MunKCiOx7HkDAP0Ppj+tUDvRARbZw3aK29qAT1NmW8dXcZG6Vmkqk2/tNr0I/OU1V/tUhmDLyDiM8fijWeqGC96+6+tHHw9Ic8/GDXujkTqYtCjj+A5zd4y8np7SsN+pm59oY+tQH3dw7RK+7r+PRKnNkF8Xl3FWXyTZqnhe6CYHGHm1BAgjDiu9voOmtm/yaZ/9ZbExn6abXWu75JY8iLALOB+3Y+docc2B/uQV3h/f9LQ4zYGXB5jO3cYXHrV/c+xsQ+a+iqBM5of9M3OhPCRqUkMwljGlb+esO/h014fRNqrGmd5AyPwhIRf6LW4ibrBBOR5LhMfrucK37YTPZ1SeyNm1eU8dr1QK/2SDz5SfONv4EDt+pTN1vgDKAHmTN6Sk7Um/NuOjl+rJ0qv1vrCPmsCLAgAYJvgnXm3Qwm0kLxuW+il4eltXpM7ziy8jenFuO7/7z514Ca4sbv9BpmSOSFr8IusHIWSFH8BscbYnjNSLWO0PshPpTes9uQ5Zlx61fjpfcxCK/SigzNKD+aFZwrsqScbYqS7fSTCEoZAi9b2X/53Im7LZkIg2MKLnqEMccatEzd7wlOgWLElBMbXOkGkuQCW3J6eQZoxpDHGBZ8SugnQHqgfUfIrAV7xSBatGTwVw/oYFx5+cigZ8FHiAwRKl7dmMw3u+ortBSWKRVYQhNw10P02EWemwAfKVTOabDWh7MPMhkJGT1z6HgoxH3tcji8H0R0hHsQiFHyMUkjfBCANdiLirApI70yYX7NT+FWmOBsUEyZMsjQqkvcUwecEs/ntaI1Q3GA+sokoZZzxcdxX4LANGJfmhJo+4W0HU7fweFgNxLhGaSeRI3Pl+68cudXC1+wy/MsG4jjY5JFBYTZBaJ3baHD8OvGZzK4f+0n1AsakdbFCoqLm8tr1E5pRTESTg5wp6CNgGWoJ+K6s7IrxQwJrkGCnmeIjv/FLM1auKabwDuMjsvBwAE69GMxKz8JCXdOlfv39YD639UzZjV0XHqH1qNacDaCEPWonl2ZjbBxJTF92vsf6Zw4OXnF9lUjQurgBuO/1+rHCZ4jXroFepAnAqMXJdSfzrgRblrwuviaQFUe0cGI22CfVNWFNiXTGGiEEHsZStsXExHTWtKVkymbeEGDwSZTaaaaULjwUmkFn0jtA1MKRfd51oQSCgNsjmbE7U/YT+ifUt5u0ixYhoqkuQ8Wd2XwSzDeSnz7JrBUtdSWEOiq0T28APdMf/75Qv9XQ0GjNzEVGEwps/SDuoTLnFgsTTZq16TehYq5EPyIxH8d0cZICkes5e4xgSDgpnXlUgrdiopW8pay3T2GhVll1fIa+XoSxLUr3t23P5HKcfrOKvbYvjlIzFROfM67YautiIz/PLLOeX9lsuUfhcr5WiM2f736Mm1eQcvrJfrT5P6c5YfPFavbgpFSKDM+numad4WBplJ7eMRuT0KM3uQF0F4OegzBKKkYpFgb9fEYhIZSu6JtOz4GUz8PFE+YZohpPOJzOn8EQHdf8IVaUQoRytPkG4MRKkTcua9froudHYo16pG/H8vPOfmykclOBheNaDGepGYBDgz9LrwsHHyIcjdYRDc3rFx2AUx3xvzeAoeH17W5nsRLJmkqy9R6d1zYO6c0rtFV8Amd+Pk+WDrSNKK3huMmlPRE2xrej1B1oiXxZP9qqSvQharSvvA8eOhh0op5MGVxidpze3GDO+3x2+Q3JyelztWDZNWT7NrEPjRwzKyUxaffuXusdOnsm4OGwEMcQ3C0mttxsAzhaMlosv+mLrG+IrpKFxeTkxzPVhf3HyFtx7YHMQp+kpbD5gio7HXsIQIaWoqRsK3G7OsEOMv8G3d9RzvYKxbI9bGsqjcrFud7WISyjaYZj/dq1ha7VW/dqwSOKCR1+ZDy10GKkI0YQoGy1yPwzPf/pOdJ6TCYqXkyEQcyimY0W1vYLRWiZn+ZfgBv0pWVcm5AcXih60q9QLu+NT0ixGWys92maPNnSttx7ZAoWofebCS6Ie5tN9rSqtaQfUFIKkg0hOpWVbtKuuVlz0Uj+UkcqvanMyzbIpJsa6FSjfirKyS7pnOlTplGGBf1VdMkoRBcumv50u0VXxhh4ufP3Js4Fp9BGpKLua/sDaRoGtZggnRY++AmYDGyKcDqkVHIPyf4SfSPUxmTCdH5O6Oj/VAmanaRHpYEXnZy8TKHMSutMvTrECpwo2R9gW7VH4FobcFO34tVTkkIba9DpH4isKllAOwNt+uAF7hk1/vdEwbHIvcy2BqvM5bMCH3zSQGTYuFMd967H56BxNvhJG6R6rjTSozNsepvQqWDI4RauUb1mj7qcZbh5QygWNe0yYHbBJKpvl3n+ws4FQnfOJlFSRVbP5s23PTWX/pGfQPPHneA9WdfZVzeArfXWwbL3ZE2MqCHA1OPUSENWiPUUHOqF+3rm92ATkbcWtN76szvgvwudtpGXNOT2a7NZpBRznxb+VPmISJ1Fx8fhiyeeGn+7OMDeF32vpv5K9d79LFSvsj0MgdIVeDwPefX9TkFXadXheovoK7yhnV455/xqzpaQccsOL6eYQVIXqlh2QM6+bV30eehe3/e5+/6FfR4/7I2u3HM7/PW9Sr2aJ4im3JyUnsxs5BzGWn887YH9/uX15yI7igGM+OIBB78VorXvNgCd9GrIF3pcTbheteJr2Jws52l+3Du1plZADyVCi23OPCg9GSn/SaQphXX5pg/QrS0jkzvv/HrNNxxiJdjBqWl/6VJwLNM4/e4NQDEcXVY9OCDsruLODl0ZQm7Hytzxgp4Sq07t72o/fUaZ3xhqWyQ1Qhc7XF5ZfzZenBZR2SunhZwJlp/HBSUR8hgnTPF00onKrcVa9akUQTriRwPLSS006lKOjOd7pfGSlDe7yyFwesyCZMILJVtqNQ51NCM6WIKaN0EHxqP4K4SY7mTnvrGDVVMtkKxilU3HIDdPkRRGZmxQzZPM4E+JVhfrobKhUZOT3CFOMizUtse8SbByOZtmlgZBvJol87UeLnX+xkpXoZ44L5EJoTc9U0z5BLQ0t2KN1nFOfbY18u9fYcSMSVvzGos/2XWWLhrXWlDw+EOa9cp2FmzJWBkd2xzkeAYgzte58JTSQJPLLjTyFAQz/ydwUPhPnoy5p/dKjFSjF1KntJmnUsmM9QYdrMmf0jQrxdyQnRTU9ptbjShHaCOXGZgYSgvlDsloA5jI09bKLTSm5xPENlBP6Wbl1Yl99y7UdCEfQ/Ypm7RUkgsxVe4KNDO2FXQyKqgh5TfTLJTpmZogGOAzu+I6cN6/jc+4flWhXUAWJ5dGLSpCbqTou8V+oMeNq7fxkRRg4YlNdCtOZGs6tQNBm5VnX2xNzx03EtpZadP8krpzWHaKHfQkifg4XdrtNiZK4i+Hwq64zJqFMbfvRbeagtbjM/ClPBh/2adSD+4j64OZmXtS7UONHUtdpcYKmhybBJXmvmBxQptkL/Jgm0Aylq2gBALrUhhO4mTQKNACVyLEEdke6BRljLgFOSe1dxl+5S0r627dc+Y5602CQ8aCRBNaeuo6cc0Nr6OYQCEBpmFCqfg909YEBKnz8/nsghATTo8Wu/MhmWQpQEjt7/AfvRmzNFDwoa//yYlsV/dqaNJkpBQsNLca9c+QNwDa6ozT/rT3siOaZn9q2aG0PDzHwRSUxEI6C2g+vWB2NbE7hdJQ7jTcvAEg+0jGAxBZZfM74oXCL7fNIHpINGbdLZzLQcPQ405NndmWOlFeRn++bXKAyt5eM0H4HaU3JBF0PjQGNYcC8BBbrZTcW0xwyp8aPPP5vFdtbN1tQ6i5+XVaZ6JxPoguvaHexUkm39YY4NJGlOsFTfBvFbQQE3rjnT+ZoCZkkuHOslfYBouyztSUK6/lAGQWv2x+WpiMvq3PdoZglaMn/5yNzHf69GpZQgqdehjXoTN8TDpdLnq9Zm3vxFEfiO6o4/QwfC0OS+gcA7QBu3ZAc4gRNPYQhnXEi1UpUSPrZ7XWCCAtfeYiTsh5NS2a8De/kEcBEA3iNtG6hYOBzif51sEBE+7KXC6ZTl9mN33mSvgNR8F0CKhWD7GGW15xoRdO+6bTwn+ZElZiTuEogA+qGZG4HhuTfUIpNBqjyjSv50v4ZGeFNl44BJxKjuD383uE/1BsCKQGAmNmcrnzLaglugXdgoT0COfWwwwiKJYwGFpIz+jM+9y++SyYHVQr4KAEKz8TQVd1tzr+WkmlaZVZzW33hIguLo80LX7dvk6sYSy2/KnSINbpFUuCQjU2c+vgvNTmBcAP0uTYNdCrvTtWAAOTBWa2mpLVXbCbMKUvyhEvELlJbeoCzcZeAVa/drN6RFqtWTpMNrINM0vgT3Y2Wj/6Elru9im05saIDzhEvVmQNTmHqM3/VBTY8qat38Y09EPMArPxGtoF9kbOy5qkIKucu8KnFp5wGcnqV+7RsMQasWy95Fvt5qdtTYD+ZbOzLyKZJ/jIslzh2i9x5y0t48y+18CRKkLkKfrAn5TvbZHQ4QNRXkRtJ9gkbQHjKj/4lfbKKwfUworx9p2fm2z7ef/VdQxJ/XaznXP0ug5djhBqb/GL35f9Wd1Gpcj72eN7LqHG1ipGXTQZSJD/jy0ZEf2WI/xIL2VbBI4CRdL3WpjE/07L38tWskKExN2BL6B42bHsGubrJ6eVv8DT29/H9qoj+5UNbYymv92q3qcN+KmfYinAwIjfaDa+pSBL553BUbjPjMVeZu6EyXT26Ru8/X7ozbWolnGsLVqvYyUZ/ei6gUPGj4TFCAk3BN3cNuI7a7/agC1+5uN2Y2+vVf+ziCn1KbM0PDOocW7H5lxtfg0yaArdNp3eRcBbvrv9Plx9xGfL0NAaTaq045sMrppc/e62dP7sDZLHibrFoJ3oiTjb2cmzdWdpRe9Vb2mDWWZ+SQnkuOiSF/DqW/PYm3fOPczQTiXd9KajYCuRwrM/lFGg17WrjQ0m9CQ99PzC4fr/Fk4tZ7uN4wf1K8NJARHXCya6D1GOXem/fUDyGDFDsUUq2aDUsJKs7KF006+YmXwvB4v/cliby5EWBsM0FZS6eebrz4G4t/ubdatT1B6f9QuFC1CtCtNCiqRnm9+B7oA1arGdAmfqZhFHX4dkTvKTVcOowSnRu0uh9B2NRXOG7mGjV7/Xi4qjJt2zh1W/cIZnU9bG7LhIhMmn3yFqb5Vtfk0lUVPSabNnpAtqbpjglyw4ZK8ee+mnqm4yR6X04/ZQLhdj8I8IDdajLbICnmpp632GITXsmhHNiwjmZHdmBMeO/6FaBHt+1lvJR7FaNwQ6oGWJXg97vuqcOWq5WphATuXSneJ7YQXBSiXMNgieLEiaMiZsALcwprnKvQL6GXXmxbIC7JuPeLH52E5VgaXlZaiL+VQc0YRbZWIjTvwyaqs7EhM71BHTAXWdfQFiGTGXebi+9BehxOhmSClWzgmu9JMSHQmaYBWaX9rCGL7B5zC8TRcLIJHL7lV0i/uoOU36cn5/NKwNvJ8Rn4SAlOh9+tFvjG7HMkeZh/Q/10BVJI+UWnDN7dgNoFhS5O/oUP+gY2qEX4aF4tcPq3pbIJs2gLLCUduvmiM6NrihwtFxC1Nsfl3ySIE/SPvE0mTX75gZEWcwCZObMFbeDmyRKKMkd5bciGEGABgGhml2xRYWAJc64D7i5wtpU7uoqm+Bf18TAg9ESxVh10XzC7Xii3CBALOy3vAcI5NvcBRPW28aXjq1+Ih/7RIpToj/XOOZLsIrMUwtQ6P7iVq/C+MKQnEC0xpkysAM08LhfggasqnOey6Xx9P6T4vaSfU34NfM4I5YGttp/GAPrx8aDj8yPd8ZNo+hvu9+gjlyzsZMSh0G6nfBxdIdLL7zwruR22M8n7BOFYX2fqImI9NMFCnn+njUwiVKqpK52so1mvQuUS7oE38oeftov0H7loHmllXrBObpNf1No+9o9xjCesq+PfynpMIhLdbj9MRPRlSH6/l1t354D/SD0jFJvdUem0a/gdd2ewpWW3Nh3N44iLXl5fPVVUaSiYaXdbc+awXXMSWxDvLw2P4Y4gO5BeHDdXNdc1LT9Zf4nrlccRd+3PGkpnSco1mN9asFU15mt1nYqD91ChiBjbAzb//TnR8Y0hp2b9+fwPRSwFrsMzYhGUKve3VL/5FAJKCOhvKrv3Ys/Mys1BjIjXvughp+NGsinB97oZXBR8qG/cmtkP+UBtEWtw7GCJadXzjVlJ7bdWscter7DNdRLuih4vuyTjpI8AvtbpHLb+YnRcwGN+7tNtFQLfaPc7zpjlq2xKIEQjZC//nrqZ1X3hRfhIMitdXbR0Ji4kLQhUT/i29vnS+OZkrtdqOtxT3Jc4Zn4Aj/9hykcJJdia56hZYV6ILZUqIw6WZUMkK6KteKY/FVohmqM0pSR2/MaOqrXv20VmrdpfrL9DfWCTaFfv4hjY/TXWxn91A7H9ckJCXa8/ymqEES8FCZA/blavIov3hCnnuyn8ZoSLFDTTb/qod6dryl5ybdzxIlCNe+cWZWvu9o/rwb9wNHkeCGusnR3o9atyfKszrOkAXFI7OEhULRs34DqeHtW+TDai+bklNQbA5mcU5kdzjQGrL21298nbbSygxFQCbg3VqQB0xq4DlM9Xn0mj60CExxhAJU656E5vlnIkH/4b+3nHFp3QAqqn7R399m6pm/BwidD3ycDyaENNOUAd78KU75SMz8831gtUuLrw2jJlMphBhB5dERpC4ExdLgMMaiDzXUr1J+dez6uKR4P52ClYvm+RW1jyxqOVwUldgqvhX+p5348czBpHaMj16BmXKmpUT0cBPF0U42vZf+JwEoVF+tavqMnjY1nv6+A/cHdrnsmgvZRK5H8u8eNF/2F4QWywRzAUJHHyu3fi0PkRQI1yRilO/8fvmeDE8iQdRX+LLQYkEXlYBrjbeaMCKHY5le9auRX7XOFvcbfFUtvY5uy4xIK/Q/Ea53jXmK0fArxNSVWBUOj+3ZxKmNeidYITnaS8w2sy6jr/hQojG+mvn0PL0y4qij0qf8xDbekZ9yZpdqJbg54SCjW0/a4t8ikSX/SjuqHf3ASts7Xch2utQ2RhUNWHEVDS8UqstDb6SZjKO0BgWHH8lZttwgaz4ewQ8VyOEmh55t3gn8bbBzdPkN1Ypu5ps0YfdsPjnn3a8uTZ3GZSDstPCdQDMJi4ILepKtfmqIUxuNcTVbcohvzXx0BV1x+43yLJVu5FNP1mJjyLh0tpf57Uw76D31e6P3LI7mYo1ov6FC4T9lrjVHvlr/VByNfQwu7f5MQoOL+RQnCKdSv2e6ldepP3JbB4R9MyvugIOEaQH7A/TP/v4BgwQ724ZAcnkxBOfI3ZL85zwgDwZjGbWGGNvNY5xfdE3Bv/SYrv1+L6HRUauFsDZsM0KBFXrM4e3ajPoPDU3zWR4l3tn2hLcA++AyyX1Ru9UWGI70S+iS8pUPBOOcYHnAUueOblLbeKiZ78LkUKHa8W2uNfomF9dVzIaZU/8hfkc/fR3LhB+aDZoW628AP67lTR42oz6m6snOtpwvclFgx4J6uFhbT1ewWrsX0LLsdNExCYmgDtunHN3/4Bt9s8jCcPFU74oyXuQ0UDHtHRF+I7UnL0ydXRbsMHZ9PFXB3fvTkQc12pInd2qxb9Iphv4vm2M/7NDPaXk4DerRFrNj42y38xfvX8nwUTIEwRYQ8V70XPxXE42Lob/dRow118qdtHnhTPWPO0CTSWlffqCVlmUFxUiMKrWZQujMYXG19tqCr0Er5vgYuPKdJuuToL8uN1jxyD5Up4IYHzLBvYpz9cieKXsdjYhaMq2x59MUsspukhWCc4ehzXTyBz86/3S0JpOOzDqaKcfExUUVLLifSH1Qg0wi0/vDJ8yuMnbZ43DbT40WpCYmtYzQo/9H0XmHJfm1cfxBTNRM07LgJ44Sc1aiDVBwlisDV2VppWnZMGOYe1tahrjNCsHSHC1H5sgszAInmFqaEwMl996Kb+9/z1/neq5zzn1/v5/rnHPfoyzkKDUjZ+3mg0MXdPOqUrvl0DvhRdi4IA+08EsIMX+4pNPNiqwo+SMtQ6ibdAnfZOTDeGegfY8vsKpXiPDcQMMa2MQYNC8ppDPe3icR0uNBHfE2MPdrnbepNYdTAjc+V3HOzkWJ0xbYOCN+0nBv8ZFhnOO5K8RbRClwsg1CbKdMCH+wAB8GPjX3KqaKi0LwAqaCwV3t6fflo78IYE1RBCzpS5Lml5v2ydvfWWsWCeSnB8EFvqGdqJKjPGHdGn16deK4nF5YX76VXHGx70jZeerxveKCjd9/gxu571BcC6Oztbn3Z+JyxnIYWMKxSa52UrHvrknXCUvecxQUHpM7j0Wr3r91eMh65IZzThSYQrC2kAj6ix5ljq51KRU31rBkLPLoFz9dbWhslKqEiHvwlQmRoIQx4ceEX5yRuXCW8XVKWVhtvAOIj9gCEoPHDtZ1FPy8E9YorAlWgoz4CIZDZFRiozs6FPP/O8SxxskebBoRRe2p/9aT+GYq+t1br6BGp2cZOEIusDMQvAWAuG/96zJOXa1SE3jN80jh2PVzhxUeYC4OzbVj3gYWrAZ5piW+g8CUpT38UMzR73fRIoUIC4Bjw4lILzXO90k4W1ivSVDjharEdwYuiFwkLjIBAMV/zr0ZiAN9nUEyGzTbQqnp7RN70aaHbCephKDx0cV3XllOQXoF4jJzxP9bFaftRcNJDoOH4f+2j8g/+plMc5VHGpOpsgU8jlgYzCIV3IAUwtfv/l+Yo8gVPIfJv1b81U051ewjmeQPpfQcIWoCW0Ryp0S5VTZv4lc3tLM4pzxUiattSD5BiWQkIDPmtHOGonjFBRbWW4D74kIeVxwFGSxeiVwcNTADCoXRooj0b2gzM8KjSgz1yQbkwjlmePf2tO451Gbk2+P36xwkmUxMuJGTfndvHDAdTf3HwZfu7VH87FUDMandAkznR81Hk3NmkGn/sP5Pmt7ulC7lEKdj0sNmZyGqwiPMkPRr67lJTemb/AbBms/CqD26h2A1JAppsyIUN7KHLEHCd0zzjZBIRsjNKGgUpBhSPGxnZqobMPr0BkJBX984tB1EKEq2sjLyUm1KPwY6A1ZGduxus+HdVp6l33BArprBF2DM5zJKwxDoxs0jl68qs/7fZNZ5kDTfsCju9e+f7PVC5rC2r0C/RXqgvrTvSpYqUYx3kdlqjTDAp2s1Iv2eIEqf3Lewed3GkoX3hRO5duY0+XK/8bo8xK7UnOhRm35JDdv/N1JY62zfLgshAh5Rhl0b2pgWtIXhyj/LrSZe+DXTlNH++FbRmbuoSXzK56hDAaRqpS9fnyXnwQ93BA5b6t5W07k/9RusGvX82Z0WgRpWah95fDH3d3PJhPH2ZGaU3BCDy5jJKdGuQRzDf76RM2xrkR3ympo7Rm6PyrNyB8zGzrAgOYgFUcalpov3tDXi7LL7pTTXGM0D2TUrpzxiU2KT5boK8DP5O14GqqthoY/B1NrNLeBQeefVhtW2lGYyLdx6dTG/6PSCmO8WIAuB6hz3Ge0ouABpGnKLMlb5kjzK6HhrLfzaGqsXWppKZhRjjSLStwCGsfXBNp0SL3qf/3Tdxl///Eoz1OTqYyhPEGliyrlRpbaHX+zQN78qpNJCnXEu8uXJKOgC1uTJxvwk/ppnTdDtGivydF3Dv62cYa07sa/5/upPMwyRJrOwyIVyO8mnUZEMj4VGFGq0c6ERM/t9P03mPgpykCo5gTMSrrZn7jcf9juLXdvFrhqDzC3n/WE6HE89b1CvjvCh1sqpMDjJJeS0KHNWMAorZxrPP+0kuYMeAqIaEbsGN/7QpEsQyoOTCkZw6pdLn+kL1WaXcPqSGIIscXSSvQW41e5Du4OSIV4s0xzusEWpB3OqDx1hEDzOsq7EDdo59TY4nZKN1XO7Ae4aFe1+A6oRgqghVNr6DGpNFF4Icwrah1e/sZ73/7D8z+Sv+qvw/twvBH3Thml7lFmO2O4kd+IKmZI0pw3SNnYWIBSY/ADkKDcsZJ3/FllRNnIESAaWJkyWOzr+5QaZm8em6ljm0DVBONYk9+lxgt17AhrwGV9T/RbaZuBYuS9GOMxyS0qXTxkDYSNN0hnoumY/WGMvbW3dB1Lpd/I4QWGPVu9DtZ2/BYHctpH0wrugx2SCYVIDecp29zet1c/nDs5RCcc91pM8O5SDxxPOXKmxPI4gmXOC+AXKxksckxTtecm+vArDQSBQ2EbzWSiIOW9RcrB8Tl+uk/6bhdoIaRPLjh0epxBQDVz7EB+Go11xSSladyyo4W9IKB+9luAV/n1esalETZ6mkjsjqh1tpbtm9jBnZI2Jm3hNKs3JI37I4bCGDeafTIZk13LvEAw7nfL58c5RtphKsDpYfM0r6VLGTh2xxDxt3ajXLDmcUZSr6hZwxp7i6ncWM2fGpwqxIXz1WVjdK+VHQGv03H86pli2kjd/M1p0xNHzr9XxQNSYfp48LSRc33Dj8v0DrqdqUsoPyVqrQx3kKiFpbEtzD0vrQxePbfSJgvmUFG6B4y+a1YjWvzmwhSddTidEZLMxKjqBiBNhu+bKCtn2xUqlHWnNJGLDkkTylA8muwrdh1zEGvYR2+6uPfHodUjhRDi3/UtJaOWSUKFyoU690m5ZAzGe95JQ+eP6rtgUK6a2hJXDN8p8ds6ctSa9Stm09pyvXXisC5la4rEI38PcMbmmopOifrOssK7RwxwUF7oM0ARJ/28vNOzan+8W1hKvCYRVa2ousFBj6FcFGrCLjyGevhfwk9s9fV8tb4vPfGPjTKH50JFVdFnTfRf23vL2XXTONzam+iS2pZQjNa9PV0dzjL2gDUd373W8MXtjWWK/38Ngd/kYFwGAFk3j3cWIuNBxLfVsvbOeiLHCsJbbieGQiCy237bbuJvGT19rXLn1W24DMbOf9oCu1RYiIxZpufDKYOhDh5J+xn/L4sf0zcO8wJTb/M7lVtf/snMxx9Pq1S8zjxWe/UaST66hYuep7EVOJc06eHfZe33bE1QmifBbUxltyk3QRJX3jB34Fdfn7HZ0JPf6koPkPqotJFOA1gpaZavHMlUDoco6tDnru8+lvulbNBOHGfuOaVvOexSjhZV8+zjRvqJLLaIbblmCE0rm6CumspBaC81E/8cf6gZ8FHbkeOyo+adxbl0JfmXdfra5FgqQe8W9AT+EhyZUqn+nrKzf3bgl/yzkvSEvttnDO+Sf5wOQjG+/ftbcnwnnxzF3UYA+WRfZEGrwksnXUuuBBia2bpU8Yb6INRPW2m8B8apPjh63gjwSponkz6tRPjYf+fFVXt8SnFY5woVeYqZRzp4ZyVr+mPDX4rgznGghsoudm3nZuMBHvPdSA1F+cuFpx+7f9mMfGOHfOEhvIm8BSYp8KKph9EIP6VgBf31ueOTYvNGJjYi/GZqp3Qgf1MVPvGQbxbK0+0r0TGnd5Gtv/ztO9X90IvG8nu/FHot/Nv5YSmItt79uNUnz5Y1MaWnhO1J91xfzlVDR0bT8i8rW3y7tq0kVhqXgKsaVdqU7LttwAdVnU8sQrPlbp3ME99kN9hx8aXLaffGO95PvjzLGSltguO+eaTHHKmwa+El+7C8hia77k99U8RZZyI7BDZP0jX0q50m2mJjaJMTsGJnBeRxg8JoexGdE9G8mzb/BeSpJggT0TzNIBpcuytilhaDF1vH98GH/Zk7Z+qjW7df3TbXR0MkF/jtTk4VRaYn+XfBkw7TBSmz45sczhf3u5zqTgnSnU6UWUBP40fHTnHOgmErx0BCngqacqOopOZjqZoQouwg/rVgWLERvRnJ0rKzeyDWzpY1moze+fKWAuiAwlc3gUbw6KUxUxTEw3yCYMN4e+PG3epI7LIqUBrwAE9wTzCw9dDYhwOILVLUA9ZLpfsgcExquHXFym+22UGpkco78ngm1q440MeNw7KhrWK7aLurGNboFlUxZk5uzzQWZec4tM/+Zngx9aD0BoKKVUcvjliScDRcMTsELhqL4lW3+42cG/mCfnLimnsQYVmVcbi+/D2v8G5fRvJ0LyAJsLFY7PlMH5+JietNAt/ShOQSs5zbeCEQo/teqx9sYNDFxyv4CB22MBw0hlv97dFARoShVTWwc34hvT6zZCyohBSHk2gu9q+eGNTjGqfWjTHaxs/1J+Yo+CSjPn7l2WPXJ27M7Dnav7pDKdgTbNBj2Fm1K3IQdyn2ga72H2HWwPNJ57czVy4fB1+8shXhVzsyvtsuXVoLrxin/6I1NijRqh14/yMr5mPnf8D3PX7sbx4pT2EJG+9NlhcZ1pvrl8Kp/Ym4Y+N3ywP5t6bdh4jJRkSZuC88fDmhw3L3o5qoPV0tXzjal7zUvfC7yL4sZ8HTSl/jBGDF9qeJftu9sgMa5Ul6I90zumrOMW3oLavEgRXSbO2on1vJWvUgGsiN78DVotNvZIelKtcMgskDp6oGTbIfvX5iR8Re8zW0kxwoqwUTVKLbg9KmMKmiynxYybd4riQDkv4hvwb2sakoN3LVCyF18VbZ934ujDzPMnApyHDtmLo9dh0Y/0mFTos6hNMX50ZmTk3ggc6d8xmiJsKBKtfnI96v21skulWpeVOzeNXr6+W3RKVcOnHAwZGP2wJRDPuglFH+8Ko2ANaqrCDOFHTkFBg/OJxQBKesfoP0bPUl6VsNttyHAfpqcV/+a/+hAdsxXmz0e3rpxE2zTS2+55pNPQwprdGvVG5jCW1oTBpe3T3/XZ1HyXdQ8CVCeAlnUhcUFiS+/DPr0M/FrYsMTNTK19tR8V5sHr6MEoX3ng5ZsLOlw0++D41GBHrKfUjpyXmjKiOPyXsToS/yxCm5wAjg/+njS0o9YfeYNCJisEkQEie4dRL98tKllvV1sIxlZPRcEBYaItM02W9TuN7qythdLxSnfSvneeTyahCYYghrlQo48G9leCl810NcIG7DiESwolZYsN+rmK+xXhzZFBSs56WBpow2mZ7hU8045MdqrkszKubpEmx1V8rFd25ypNr4b/SblpOdH4p/4JDLPa+hID51vggfwU02mSwtOIbr7xVvfQ7Vah2PpubLbfdQ224x8Bp6n6cfegakH4L5aIPUMGcm7+oQFKgtLYmipB7fFJYJY8ueqUNuSPDvbh829sflVVU4z/QbbxOOuAGgIprGPJxcR6ojoMnwFfXm9r9TjjJWRjHfDMdptNY/AfIXdwSnHWpniehaZLEmgwoanzxPTlt7jOoDoPdBfo0hwowimG0WHmB4KoY6NKl+HT97/PO8lWTGb6XCsbIqpJparSX2CVraZ0DqVadAoZqFve+aOIRGlUa0uH03znlLz9npprvPmlTvp92o+yqMvc0zoR2Su/xYkuEiPlTZRcRN+dXrE6LnMr6qPo5NwtoX+nt3uheVd1i3XVcSINSjSeetLLrJV4l7qs4UD476PFL59473X97DhkcRif+BJOjtt711IGrDLyzjdWiopIACX/4yncB2p15U8zntemfRTkm5t20lOLJojgaYIERmH5U4v7NU59GnWbeKbwSHgqpMVsXcYphlN//xk3CZfw/dhF5wg9IkwpFsXD3f/tN5+hbsr+BXc8497bOx9Uh0I4SGIsSKuOFa4BWpOsUtWc4e3qwyjVQ/9iZiFIPwWFh7H5a+BoyNsskDqSemxmUwYMM/RD14Y7YlbTZ5qVEeLDtXisbPsWgfjScqdvU+2N4SxdBRhSVC1OTeQeQOYvgM/0uSE3rUfw4tTlkCtZmWyJoT32c3jrqcgG2/c33wQvY/juhdxAb4y8R+xz03bPLtopkbzuoNWnaD4qx436V/J//Z1Sv2IzMQ70wSDl9EwkRpoMtno7rhdbiuHt4LYaDkeHrKI8dp8xc9Gf//9wl+GSE2wAnEd5NDsovHRnvQYhNpGzpQMAIMNf77cAftr+Ctq+zEpzCI2+C+Warxr4cgeZk+1msc2tnKEI9ucxqd/Zr34CnegBovTYkhmDdg10acR+r3VqANmenmyWab1i2zNXsR/fvKAtK04CWu6b7yrg1peKHbVHM1ueWmN5SpzjGX7OswaMb1hBDfVqcaTxl4qBMayKCFQ+UH31D7YZy+mB8la2QrF8+eAFv9qmepIJsd8m8mR3Sjk53DRfLqR8ynFJuUWJXTTIqxRXFYOaxU+2u14T+87ibjhZquKXOJTtoCdHMOER64Wd048ks+JXC6rVo4L9aYGrYavNvn6Qzx7qxQg/Y2YVCtDLlwWf6nzFVLnVWmfqweRcceLSqTJst9p57yRdvUJdAB6jCe5s3Lui5Du9pAppKv+3R4Cf6WaQxwLh4BLOVq9Sc80oDtdCsVTaIUwJhOmtiY8UvzByqoNLX5sLwGCCOTYImI7im/CbPveSCHoAak4nGtyeBl2NOonS2K3LLFcVg4DppthaNQN/yOUuugrgkmO63yU0XwHIiWlmzyNU7ONG3DRRlSABJRd3MqIewQjZ1Lr/o1vKB3LY7KyNtD+aCYHa6RSrubF1rxF4/FRwj7+F19Qp/dSngypZsbK6hhtcpKpEkthEHueys7gzJnjVAAeaRKehNuBQjZY3YCFKAStLfAL4SoQcQeEmkbWARQCeBWy2IOaMFrfhd+eVX8YCU8tGIag4PyUtK6OD8iHelcOJpNTDfDqbaEyd1c/v8hWmtD9UPIbWu/PpxJZWLzye5trfcZpX/eG2sp0gbOrEKnV/C9o1eIL9Whx+i7xGGTHvJDKXvkie1zd4/NOhlLAB6Z0ldpduAe5a/GNZQnSk0LLVDYWhdG/ZHFuBW8B0gc+HLc2fnPi0KfLQzX+ffZUsNajfVZDSTTBrsS+uw6S0+yTXgWWt/9sX41hI96fFiKqDh4KSPu7tyjsNrDIIbtzEw/sIf5dizveqNhcI/HQhhB9WZxGx0lAHEghVz4yPpiHF7q3nBJL4H2uj5JEANw23k58Za1i7xKxgl0a/T66pfvInoFjP39I/L0TlYr28oyqH5F2kf1iGMuFjl6UQ0u22Kr8rltkRxaE/BlyCrta8P6a1Y0Ea+3IIR2LZFceRRFM8ay1VqbbZYLFyTTqb9OWLYB25uyFk6sqfsgLr+HH1daZ8+O0EP+l6RVnfIO5+6QnE+PD4A72qiZifNK9qnZRolepqAXe5g2T23UknLUnndgt270xThuG/gY9QENS5QDhBv4ynkVTqpgQs+UgN7YAvYgj2UokRWVJcOnktIhoY/WLD0ahwar4+Z6oXdc10Q4hBENR5FsUUs+cNZRYUNzBGD99J0sCINJi2aodB9J9EHC/S1LYdcbo4nPgZ32xmVsHY75rrkCMcGYOf7mLblIepfBNrh4+F4mfzYOqiZFQJp8HBaLd3dIkVH/KdNcgVURfkNDKBeGvyP3/gYazJaCPjF5bl++O1HG8fymYDwWrCjeeKmynomFqV/FguGyINNXjrMK3cpvIhxHOSUWKdlb7LT/0x5ncFogZYPei1zqUT+ilvpj0amiUJIWLlkcvLsz8CAg8aBa66v045oZ9XTWpCtI1gg1eyI9DDzYkq36OuCP8blei3TPbCIuQgrJFGKubV+L9toD3FhNolr41uVHkuvw2+ySkKd6//KRaWLulTnn1UHRfePX6i7y5gavXrrfUhFQbfzFnr7ikYsuXJr5DdxJM7Hnru0SnrShMpP1rKrioAdKFOeh+9cCHtkBou6KGJuj9clhd7Oo/h5lTlu/YbYPtXdM6atrzJP1Nqo+ydNT32o9eW0DxaYWGms+EJmudgJQkwpfOtoLb3RdTGP2H+NW5bMu5CPNgjNdbebbgFQr2gL47mbEZKbQBHCwBl0U2vhGVf2Cfh5W514ZpKGPZ5A7nA244rrVQee91kQagZfpwNWn1SNXX8ia75O4GeOhcpJzQtrI50pAaGaXfsPH5DicG2PyTLDnKkRuJuNOedR/08BoQD1UrbuWuswuGzFsopw5dtB5QNTHdZfcjzuS6GZxO0sd/dmPMP7WVv6qRIFR5nYwluCUVuLcBAS1jGj0rq7Hhc3IdU9SQdpLA2kSorB8ZVN+17zrpkMtVkgsAHS7t9qgAnhN1JH8H6lAoyoO8HJ/xk22Sl6WvPPZOFmzEJ3/ymTp8qbYVk3mSZShLUD+Y5EwBpViUeqiRLhzVBGvEiACvuVbE7XXmE2M8XDUrknmOFoFpA+59/fJRtQbrpbUXC4lkaM58h9bNX9nnMueSmLPIHRBqojZvbH/wEDjEQiOp2OCvAgYXW0QcPj1iZff/sstwb3/I4V5sUVTBoUmEW26E6B0E/2QVLiMjrbqr5Ho09SQTcTWGHjsSaU/sak/5KTkPjJlcVdNVwbqN/NOziuvpTy66hr1UfNgIrsAbkPD4j0Yhf6LMFA/ZTHRv9j3AfJWCexGAu38h0OWXfe9bFE70NdMtn0gCs/R+K2Pq5ihcKm4ieeDdcR/ROj9n4e+N4+F5epHHzJVsr/xGMddXzOtQLCIlMAdPHPCh5cMaUndaO9d4Al7Lt+bSOkm4kPmEcym5Jrammoh9KA9kssVhNZkk+xTqjYRWvVug+vuq2ogqXB5QJY0ejTEauRepp0Rw/yprS5nCmq+/Elvgp02bydZbpL5ByROz3g/HgBDesjj9yAxMNBBYceXBOSV3yV/mTCa3NS2NJlfw8hjGbNDH6TuqqVAAv9udHaQOn19zhm6mChpVFLkt1pZ1WLFhKnqBi7c7viN5+KzZ6SfX8+s0h3W4SVnDDARNvgOqavl4f8HhnfKKSoyktNj+PF527mB0ghXlQvKuKGI606IOZ8ix5dNX9qde7WnWN77q8FvvGYhPK3/il7crypCFyt83OL6kO3W++Qr6QV9LQPTPktf1Ptg4s0mzgGvIj3cea1DbbLEhlG0wIRU5mkBif2IbQqzP3uY0BU/VH46KcPcBJ0OcbRjYsrxHH+plYXMFqEvnZ2IpCmYYBX2tPX+8t2kbffrx+vZZX33xnbI/LyfTPAIXC4C28mQcLP3VtLhnNNgvQHsyhUogp9kkHLqCRGm8T+Tg9EmS6iCIJtYMpl67H+WSeUzmB3KY8I1OaP6gX40S7GJJTZuxM295z82NHBgeOjhMIUEkDQZysSv5k0ijLEFQ7GGry7oEzcSqRuZVTbW7qAIdW/FUt90D0pMuZ6V3JitS1S++5YJLIdgbgeVyaokJ8WoNLr5olktU/EE2mOzV9VQB2nmVElzRUqqrpqClci4rO3bPalKLm3oXw+4yMjC44o1XULVBOiCz8S2OGIeZ7ypWabLrdZeo3PyhhkowTYleb7A6fszkkmFM5IUa2UeFjYhI747i7dqghtgmaZBSxLVGjCEBYCOWcjNiTqd76fwx3ffkkLWumkXLyr6KYVabhPFdnkpWwaM47+svPKbemD0OTgPHGAgFXERaWmJVw9uqDeXX7ldbHOsNj8HyCadIONvVB8IKWVtNdUWPldN/TqY5/PLVe2mhdGggGIqG+ejIgVX9iUk49xz60MQzpHf1ySxrBMmoYkK+EUEC68SAfMnc5qjghoLyFKuRXbrT7jEvJTWpQSqv5CAw+J8PJtyhUA35izedLjX+d9/AjdkSOwwiuShCoFOGg+pilUdCJyXqcakDrTIBP8q+tMbJsqOspETTQ5NUtI7ji88HpZZ01mhPTr+sqO5lTaB40b3r3cpY85EHMw/EKAQAZwZDgztlefQCKvKCUWbujuasyQmPyopLEhCOy91tLgQDPJxu6GJYdjkrmUSuTKNt9BvSklpIupwiKOvso7bGvKwNza7+SvDKDxyT3Wf6//t7/+kaPGjclw6cPTlsMb+wBmqEFGGcrlpMAmXzlWRwp8B/lItZ4L9FDbnUKPftmg8J1OzAyhWI+xxJ3YO23X5sSkpdTxbNk4HLEPvINjEGvWdi71xlo50buKZacCGcWgUreL3qZBj8Jj6l2tqSGhLIhv01/5NSwtDqA+p6CkztQb2Q2MGX4hkBdz0kdst4ePtE0zc5xl5PzeTfWzelFmAAFPOvPjkZot5Vu/+qrY6LrIQxcXxQeTNJpfPlGedgQI0zrEY1jKXzEfOr1PKd+NYqyq7UephoGRuyU9+Y/CtqJ+lt+aQ4SUlaqVqw0FhnksU98rripMe3Qlj/fc0YAlt8Po0KcTDEaVD7y3Za/2N0vLtPbEeSI6UjcMrPxClHX5cjNdo42ja/EpDj9XC0fIMZ+4lczi+dpHiomI9G29gapxOEfqaPVGLb+IXLvA7VZEW3lcgHRGqO92xX19Sf9IyrnssfF8Wpqw3LaG6xo70ZDN9EpJCMqLhg0V/NognrWu3V86cqzPXQTEQIvxqL/Gs4bv3UJWL2dxxOShDbyZMtqHy+e1jmnk6FtbgWVlZCH3LJKNAvLrmVQTeFcFANVcZZqh8N/xqtedV6iTkua/fwAYCAgsusyzIybsW+rxNOCSdN1ZSNZkACqukhazs2Ch63asNCJvZtAc69s28LNlBPO/vh7ES78LRTlWCDU+i7p5+YuLqrSBqXXcTpR8R9TBR//PPdlNudnv9Mh3wpEsIbXjQPymx0si7j0e3lb1kjFtZLmO0I6qBOqgGb6MlsXoQJiNQP15RWjgR+6jxgMKBjY/ep90l/o6lO9eV0D7gP3KcnYdbvaUzfkr4j8f7vR3yb04nTS3nI0kwYSTz6ia1z1c4gHvUTlb7Y1bSe16ijtC/OwGL2/3XXqvF7L7GLgkJ65nTjXDWMhxLlsug+Lfr8fCsUGI1YO4eXHTygofUCKa1T4ADAZeuVTeiLp0915y2j5sWrOyw57a+rzdW3WRkyzKztA9cWX15BOyU04ImU2IXRtF9p13Uc69RpG9Wa631yXV3oAn3d+3ceo8cpwufMtbOY1IlgPr4hhEayUc8PmhwLWSfb4KTQa14UlZXFpcW8YCfk/KmdbI9g1ceVKy7X/uze9u2eP1P9Tkcx9tVP2OfY94g61rASjpwceSjy8bDFpOdcMhrK3Kg2zT7h99w5a7kEw0CGfRKFiS5qJwXdP6Vn75Y2vxNk6py0BZw7ekoOeT7zwUV2FJPK31icHnVMS5nX2gLaPheM97x+O/isHnE1mhW4BywSJxh5y910vKsuv36fRzGIu5MvAUx3mQ7hx+amjA1YEzwV2SA1QdIoM+8KqK43ykioKvyV0zIHrjh6Rlkp0PQBXDbywo2EsMon+8vkN3ytwZ1adaObNzO0NvOl5J66gCw906lguccLIy+o/buUlPdbwzD3NGfGV5+mHsTWq+oGH6Tvpwi2gEF1zbWfKxhsuDZep2c2xDvraySy9a454q1S5uMrCdDnSciyaA4O2XqiS334VoAWCJxSafpwY/x19YzS16+33L73QfTGdiet7JHavPW0qjS1J/jMtX+GeOTMWbktQAwtchFKOi9noeZq7a6rZ1pd6yubjYny3jwfBwjbfj74qQEScYoPkU7J71O1Yopc3pTJP3nDS0mfjZI0EcyARtuckJUelr358z/Opcr9gdTavyryPTBlL9MyeLSKa3FmOYLmVZJf1hJ/63wR1z27Fz+UNO5o1HOskxQImuNNgef+vOCwpd9M5HgrXuMFDIVvAToOCWkK51SchImzYhDA0wrLhIv8ue85ZgrqttC/L1mQCshKx4tgGFKP8wPOV6AkrUgLVZN+ZVdg+/rta2oM57n5EpGsD2E/uvN71I9VSkr8PJfESK74uTzaWBCewFd7oaONxvDCsXih0/ZrB9OfWi4Q2Z4daSs/g99mAhq2XhxCXZa2CW0R3llkh+sS71V8+8twBCYGECw8GM/1SNpfEKl7oxFylLSG8ang8dO6n4JfGfTFGFhZr7fOR1jk9d44MJIiODeaCYpaXKXqnpmaLlyS9zTc9RFmn4W512iyBRwHltaco3xWr1U8aJDdWf7CeRETZQrqSf5aiZxFKKS0VTX7iLYx15Je7gepT2TIZ1gRIoMAIUzgEYFx7sM7/nfymbeTuYJBSlxifyn7dM76cv5kT1i1xryn85wYLMmdt59quvZT94iG1/3MHpsZ883e4yIjWQj+Ei3Bvngt9yYE9c3v9+jmd27HaOtR4ljc/vSk640PUm3UYrsgWrnE/581/S6PGN4C7i4/kdgNpjAeF41TP3XGnX+BOIl4uGtngN5LYl1dj+xUFus0Oj/bNtl+BeHhp2XDhYoO5fATXut33tOm3Ll35BYtw/H9YJH4bFTQtJMi8aON+hwTpfXqTLiZ8Zzbc9MLtyTUQ+5ss7JLqwz8s+qXtzDdus9Rp1ELQF1sPQyGcoPRmJQOxNIr20R3h95mDDH9NsNQnDMlEeHD86alcT9oSR2Jksx+aWaL0kgipwbVsX09wg2tWw3B8ecBPdMHyXLLeUtQ6HhC4r1z8iyoVYthjIlHAbWmJHc6QjMh4ErnXq/9lmifaaaBXJjsbuVaTuSFc/NSrkph7yR7Av2uoJnSJo71uyYZIU+NQx912rT/+jMkYYchludQg4AdsYNtsz3lB8OQ79xzKKOpm9kcpPGDlQbnagmUGpiyBdw3Nkj1bfWZc1W/YgNiZ34rVEehzwgZhRtFgNuZoPq0XWL6LvsmZHf7YD8KAR/Yu3tBx10SLVqJXrsPpl640ZSBIM/p8JYFpQ0LBVuAx/WKbdTnf0K9D8f8cJuwGIiSycQQF3ZrZTT85kQWHbDBZ8ZnmoU9z85TqfZK+mhau+r09YXYodvPGpWikz1O5EJUg6t9QTQaeeWcrdzGviVeM7wnPcFMwy0M4Q8TqIOZwt721Nvk+h+3n+Fnvr95YzVtMLpnvxEf5mTL9eSGHLEQTHH82o/T3iy1VgxFQZofjcD2mStFQxu54MKNqe+5Nx937E2yr3VLxf35YfReAJ/KNAMpG45Hj5303QK+3njVnCJ+7FcTmygFQlCO/VF+IC6QCfv05731g7uvf7kKfh5ySQUFKbrI8AiDOgRzJhctVH/uH3898LA5L/Hs8o2auF9isphGtxa1nVL79g43qIUHt+LCNO6oPlYpeneBhbP0uzoQNHQOocWGTNGr+ECXod78GMHoMp5ISIzJv6HiwYZBIctexQUO246oJRz/kKi472BUwm/Ah9hU0GA13NjICv87YqOU8Ndf7hZv/TxlrxH9eQSuf3a/vJJfH//AEcduFTz00pNhv6Ot0k3QX9z6CFLDG0xNIwAVQi8zirFmKPjSmx3tVv/tgd67anMw6gnL/AR/nRkTzA05c+f9ffk3TdRPs8NpbCd18WRzCM2PhRw99MLtUQ/C/xRfyr83Uvd0u+9tL0TJQ4ccTGHD9k7emlzNqnPNrEkt4mrHGS27qLPG/g+tDGwvDj3EAoIYNO+Xvc0vof8x4a2dLVGSLHMsMXUjPFTW0K5i6s17653nJfo+/4Dq6EvK/PZVMQiJQdI/qAxgz5v8yMz7edgPIdO1fPoh6hvnlay1dQTAHJMIpVYXepzSnz1iM2pCOH+uGHsqoBmJgrJs63gdZ1sTHjKQLce907fVCEfQ44NQ5mLR6Tf7jyoUPj3R0PxuqBejYuQhNw0ad19E7tzvHM7Oy3QuJfyw1YGnMkt4/H0fSeFyi9/q3IwvH7BnWKHB4gssM15IrM3FZ9LflqbpxGiuZXSbaHeCvgUJSQF1KMcZy8xPnCa4PDb8aFBV/XvPL/Ud0ZUY7UmWsY96J+2/VGwd05fG8xDAA6DCsciPQYWxtxv1ekOEP8lcXBTNp+Ot3TP+qhz+j/u28eWyXMx6CJmlsyfHWHvw9Lzccgs+c3l8ICFiY15gurl80tb7ZuAR72SEk34LCTTJNY+m1xrGTlFeneEPpd15DlauUiOQ6WjuB7XV9yMyizD1wM4lSGXzwpE/27XPoR0b+ZGoOlN3r5SulAS/b5LwfJ6NjmEj/1+Us4tYoYG7kcBuH2O3mCoYhsy24lN86Bs/sjlNODlAUUDXzwngeVPoBtYYZ+fpbdvOnKOAKPN9d+HzKW3rTn/BZa66fqx2OUgVzyM6JbpvU+vM5l/kLlUw9Oss7bDmIMPL6g+FZLu9DkKhzKHGOQZyuBcPJfvq9cw11aI7Y2uoq3zGH06oA/I5qQzK7GmOseATuAWX3N6huVjt9l3Zv29/q3CDMy6zTeMx5NN6ZJZlLMsthR6fksIGlgVeCQEkcziK6RQ0umzF7wBUL36KtWMqLSPXe6vEqdXjrCCMjGzwdPtT6LFjFTCbHnJywUowVh/NHbJu2pn64JvM/asNmyHei/9G3w0YfbpXlmop/y9I0FPYMq0SyarLznU9VRNy4I6ZSbsq6V6mJ7fpXGVY9PhgV+H4idCqAVu4QC6Lmg3BZcuFgDxjU+bmADS7QD0fUozLPglQv7m6Jm1X6DgtyDF83Hc8bXRUxFVfHPn0yGn2kftJzaU9ixXSgZfKfWEhlJwxANgpbJtBXsz4ltL/N9bmiVTlrocXjmqc6YzcDurc1QiZLfSUEreFq1lDTz/befti7goBzS42tT93pVjWJv+DtWWRUoFXyo87/r1yMhet82+muo11uZ7PmpRh7prXHjOQ/WOriAvN/6nqWXEr/95D2EG+wNsLQ/Gm1uGLsR/HE5VOfTT2O/JXdjq5Cn8wGlPqlEfm/sGOtd6nHHN84HswYQ/LQltPIOODxatkX19qq23vHF0bHy6z3vH25tmuHvsQco9GefKJ15/Mruyoc+qLbibg/xCMuqwLbs3czCTabuaoZwTktZ9G9b2dK26B3xunKODIXR/ukq9/fNb7rd3NeLXbEgA1FY7WYEB9YOZyPntIqsAT2V7+V6CplBdtSAnkY1LW6FF/Pu7vO0Ozf+Vy1wRB/sFdekBHIp/9bMfry1ORlVJ12DLyL/r+dN0TPxTedpc4UoTbzk2TDLs+38rFS/w+b9zkZleaHgMbij5TSpmLuGRE7PiiqP2hTa3p9Os+e1tO914CDKJ6F+8nfKvdOmiVkhaL/lCZud/lY/AJrxs8PiXxlX4wmNLxvSQ+/VkzF4pPT6MG/2OAax+PfprZfPVH2eTGAwwEE8h23tS+/aE70zuh93SHb/qcdyAUIKGk0UuLb/rP/DLL7c9yuIETbNJ/edUU2jQKRCrxGzcXLil1ahh34Lvxs7blqn541OatS/Nnv9w6WlvWuS91MIKle6ckdkrpwPvnNdWfBpfekk75eoi1lldWgZVRL7XNsXdVEc7vD6jsqTkjh1lKkfuj8VAU+2XYctTIRe1Z642L6VfvmfmZfCIvvKq8YHa2zL+KOuWW+e02hYEroMldsF34Hvf7ZdyUUux28XTrLUCvd3x02vK2b/LTU89vXK53aACdaq5w3vCIXpvcHXn7xtLKnhA4FFpvw1T1i1pafuMYu1yaFBHJXcj3s/coUQshL/LO4j5Yl5p0lB2//D0kJsfV88P9UE+5lZ/ou9lnr3yf7gMzMgLygXEKeW1TFzXp7lGsWTi5Gpl22tcryoia8Yw2MIHLe/Iy9PWlMeSD4eQHYpPId2b86kXTSzpR67/di5gYuaY0aVpirmY+cQvoyg1inRMn001N/1ES30EwIKg+XvV2XieFsra25hzrvWuxUXkz0gj3jQKm4+fHRacBsb5tDeDi0ZjIbITuA54dUU3GWCiRk8pBg5zLfWKkveXq1RdfQ2RCZJawEQzhB0MdQVHd/+tIfXD3QSwoTzgfK9PZppd22ExJHbYm46zQ49q9zaYlnHn7UwQYW/P0SyVlJ/6SKcPODOQbhV7mmsYvvuU/KPKcL0s737xnxLXzHV7aGk6OQhdarEbWJkr7N7CgST+3gIyb3taVAGAU1r1hyrULs+HgvqWaU4a8GjFrsrdcfxWFx+W1fL+mRO8DbOE6Cxtzgy/13tvqGE6dkUY3KEfy3Ofwnm4lf3vS65ePGW7DCArNp4KFG5HSFXTFn9CH3nva4B6P0xABY6C3LiMDpdoXF9AGCjeO28YekNKo1oRvAXtN+fjrF+MfG3hTbgPTqpcIELzlxcgN9V/6RevXSm+oGN0Do9bSNnWQd4aypA5MTY12FZqZrYGjTC+HKF+a3F/tTXJ7eMZW5AEAlTgaiCa7BbTnDkpeu98E/VJNW0tJ/hROCnrXOfYUcbBs0OpG1lJ6bNpCY+PGP4K9lzDFXtYfPZuJEbx4zqNv3N4Cxn/qnVD4zC8b41zZYeyQ/IbYffGUhK10SUXdFhD2Dl03fY43E1HR++mZ4x2lzWmjE5RUa02BXnj10WvCbxc+fSvtvKQhEthERQQhIiJ+ii9Xzme/77toWwP2MpQraO6iR2660A+69Zu3ijUHId92144UFbhasTUkXFXIPx9gQdP2j3EzH3Klhn8JA5nQcjNyr1pyi5GKJcGw5/2OV0zLBzBYVtpHbNTaPLUAk8TK22a5Fy1LTmtLG9T8UlBVtNaX+ZdxS7HtR8J83Q+w3oXTk4IoUteOpB99spvxIa6Yc3JPPg7WP/V1Ulco04sWOQ4ST8KWxBfHz8dBH0nJ3KAtNohHaNKz1xdyaBur++p4aR0dkPlJdq1m4mPzUJ/u9kjorS6b0mvGVogkg4Edgk3xeHhAY92b30exN4fOH7pz53yWmPSpSjRX/NBPMGQexZK4vhoxykGmSm4BWLwDetq8WaxMwvihuBCzjB4VHU1j2T8+a1/4a1K9wdtSz9dWwopzTm0uJ+xb8ttGXgJFlzlZdmDuYrC9QSYHLCFFl9JEe9KSLvyw97khHkvdW2wSFRH/JcRDBqoIp2b5RsD9R7sq7U7tPaLpmP6pIPFR77dZifXGr3PmfTiQZozhYgH05TlbNaprr87FDDGP0n+2zWvZfJTx6x1QI9tuA2vKYMKXlUOWJn8lE2PyhCMH6VL9y+9ZuNC1ttnUvcY6UJUTCm8inE1O7arzjKbibITYKvZu/m29ouoWYkptpZi3MFUW6lUEBzEbBT/f7CFZJAsWla3/hPBztoADyfKaM8l9BNKxNQ961ka4ziWdKyPed/w40uUJ3qjNqVY2ZhdlBtUw2irRl+H6JHabeqb4XXEtdj/PC9L79LGajEx0B2rMKMmvNhy75vxI129H1Rz5PsLrc0RBZcSH/z+CQr+zypx5MXk9GpzR1w2mA8p76WTR0X1XE0u2g2IkwfDIRe5le6IVwS65b1lcwSSLN8v+gg85yfM0d6zbB5EmUqJCKRTy5Hl045Tuo9id19j4T3kekR/Yml8Ehj1PmTrxwGskx1agWkymouELL50Fpb/vs/Rzo7DAFDY8UUsVra4m35ZYDe6EL4+PnvxWf50kc9NBEEruLe5QH4SN4+p8T1VGs/i0u6NpHZppK0RKh6UPZs6wKjlY9TttvoEPnnZ2G+lpkU6VkIu0jAlCAeEhDuLRe05eqWuWGU5YVOYYedORHV8uXG9mMBA+MIg6gkRcgC63AhI950l9t4GwHHosPeouZAad5/wRe08hFopIRU633R1n1HT1RGmIZ0qTtnuBi02/hqNgrIj4t2jJHv0q/JBjsj6+CYD//x7nz53X9H6f7eWYwzQLBhyTcIwkL9yDbMFxdbp5PwfNgmAUTHv+atlcfXFFU5PDbU+w154wPbIF/Kf9n+ubvf5hSOcoHGQAxiP3ojGB43Uvr9q6vI+934gQFpDTqAVzvASnvDgdHsl2vE506JOwwnpA2ejafaUnrgoIBHCuuGTHZC/WSOU6cm9wn/pwHbYrAIfmPx+l+KRwlbUlrqZEw/5J3aMAVtBoNBMtUNBiZtgVAV63JM7Wic/IKRsYDkK6596WpM3vGUMLvIqW4DPW5r9i7q2mZ7XJJANCMHxSJUuZEOID+bBvezYz5jXtOZRvEkvHX+6IxasfHEYG9LMkuZrF4F7RmqISZdsAATS6XMqGsnNGV++O7XM/QIRqrpzDeHUULTZOryaQI0bfZ8r8i2cEhW7MI2CvW10fkcG5egCycuvqSWYGhm0UZ7v7zlHPIeLy0RR+yhQOv+IE239oue+NZZEM4OtFk8WrU++F6+x2GERKo0A4NG8GG28af2ROEojjayJmGe7LS6ZZL6WqV0gGOKXrnNDFcRZyc8js22rARreWgV1ZCtuSXT2+wLUjNGtbaVSrB4C9+QyvBVE557JMgUyeB9WYABLBQ0S7n0BR8Mnty3g83t6HFnBE0t9Xyjj4UrUgRWSNv5ReQyVXyW6oGNJks5Fdms9ReX3Q3Vds3VNtNMGYtEVspJ37VM+b4TJiBwJOZpOMvKryxGKeu4EClp2QVYH8vjliw3j7O9cx8mhLq4KFrSbRf/VZF72WuMG6hSHYZbrA4YLZUSYMCMDOWfu25/TUmEFyelANItXOwL+2uWeK7M6GKFV+1q6p/iD/Nb/nNnPKCqKujFYVLrypLj50yKu+306UMHdcGbn8MUTYRf3pCuTqnLvR6EH44h5DbhxfXXjeXLbx5tQcLvJSJJ716ozmwd+4vKxH8FAi/DqKL20UIAo3dmRxAv5xVdG/UZVNpSXabfsCI2sYBZc++S++vBRSIltVBzHFhQaiN3Rsaq5UBPhe42Dfc8nsVTUnP8w7klGqafya//RA+lAZ0J/kKLK+3Kzoc/rp9ovmmtUPX9qsSueETyyqj3M7r92/NYZ6XRZ8bsIIczaVSMbEBCbBWVlfY4x3dc2/0rfUaJmt21nfVAdRRm9stl7nLB1vz6AqPQ8kqvUjyg6TYzuotJArjydLzt/a61QnIfYPKM2OvfZSSiqO5FQydH//vdleHdDjzfju+CDy5wVW2zdJ0VhypFOkDrc98Ci1qLaitEIjaf388r9E++p8n63XkXOOwHcofA+LPN4XKFS8ObLUdr6pQv8U9OO+l8EEEMDICLcip52TIpuaz98grv1nNRnSYQ7/anzN420bg7368+Gd2Os3io5m5Pblfbb3znc8V7hK7lo9G36/xeFgT4UwOAdZeIZLbGw973qo4MdZjrFSfDruat8VY2KlMl7RZfXtC8laiVsl397X77faiRdrasil0Gt1tfj3NHUb1Iu7okWn/ZefHnhe+LKE+ttzJ7OUcZTZqFKPcVGdeRTseXLq+W2FZRh3iKONS39WbZDf+wNqbHebX8SBQI+0fUF91eKgRJe2gCG3t/krEf1Ek9dHunkPXOTZZUUFz4rlet91dowwvkzLOU9JiTJMmrYHb//9OV/qK11svpvmHbh5Y/Q2hvng4CEEf1uqWKR75Nq4b1C0Z+TCQZ122We246uAsX+hz+yx0v3DB6hqwSruHhFvGcO2oYo/S+dO+jXsnxEVkVU3gqEN0+qgJO7b8/9s/4mzNVXvK+Ek99I1EvBmdfGgxbBk6lrAImgpIa/5U6ZnpmCvKXJZINq9+fZo+cn1cj/bvOuEZL8P32/nTn0Faa7Sy9sG9j6Q6x+4SIvcYxW58B8L7QE+RiChIZAt4OdqO4BvwhFjIHMLLxcf+ttCMCHqQbcyd1bt+ahcBVnpixnMMeWkXla8Gexy/+ALc8o2d35v8cKb/cQMNf1purlK1vIRfWzcUJ9qV8Gw0/jpRbmba3sLuo7alnFD9SErLvdElqbC9sLT6u7Hrl17TA9jaZpma3IHgQAhQ/RlN6X2ZygBojyGZpw9RcvK0XKwuM/GyM3/3/hf91E68zjKytpZBFa+EZBxRrdNpWB4Ywvg7lbgNjaMZ5oKN0S7H1YX5Sq8jiRDTW8kDMrrX3LZFWMV1CD6vKhRfyp4KC9z8pI1VcAqO5XdUiUcbz3TgXt+sPuiKam1MvWNBEQ5UEa+/d2YApdU0eN88eD3H4/DqCZ/kEMOHv5g9J+P2h+ai8p+aWCPHXnQHE54xiuHnYGYeMdPvTPlAmfLBZFfr5TtBV+XPcXbMXAZbEL7uefLKagbPlQ39GWMlU6LcCSMj9oCUK//azlcdMvQza3XunovWTEsk+ejvsDmn7bVqlr8zxbh1PnsrGvGnSkV1/OVr3XFCjq2hWz9W49E09Nxt7SnrtIsdx96NahpjC/B2rKVk45qjGHj4nfc/zX4wRb5uKlP6iGROlAw37hQOOl6OL44wrHlBzWUuAmxQ3QZ+GY+PvYy/ocvP3NvmnPvHXKL3s6psMX+0S7FtLs3lx6Tvo4p/lgqdVyLCZmlhPy6P8PJzrvvLvobBQb9rOKv+ry0fscbf3ynfFsfiusrI/LZuJ6e9uCV1bE2zrarHm4BQXV/rZdDlpZfMr0Ry6qHQudZwYvCzTT7u32/0TKG8yoRBSa1tWw7h+0yWoJKBJmKXePJYm9lZyVxp5Yy+kD/sGQe3LkFJB5NV9g9Z7teV8Mvfs7zGkgu9AD5WR2DC1VodHo1Vm43UlNnN90ALLO8oLJZczfHK47koFDFcglY4Be3p/Ttc98G9zg0IfuJvMawM2d8ZMfWDI4RsMTYcZY2zhIwkA0NQI0hO6M7etJ2UqL2ACqr2wj4CCvDxsnJpwFzJsQqJGIXI2tRM62Latjnn+9dZLz7UFsVrAeSM5oiOomaapojUl9G8bFbgEp/ETJ2Vk19X/q7ARCb2NXmv3kD0hJt5QYZ7sP7QS5l47Ef/XMoup/PJ2mUVXExQsxmeEhC4AEr1nAYr1JcCOctYIh0/sBTkMm5y1lIFsk1gBOsjNZMNrqbe6ehaZiB7jOsUYfPmD7OaT1w/NWOLyiWvlTvX8NecIrFq1TH9Iq+29NdBZ5J7mvtZsZo3Wwew5IGl0mJHmVjyd/VGobODat+lUCy4aEhazMh7Yqc3UXeanwUxntplLK4MG6bHQWu8cMRjCJD1ciTlDl0wRiospk1gNXvhtCFhTBgPVy79/EtMTfxndb2C2PG3kL1CgMj5xP3bO9tI9OiIkZZkXBZQ3qI0/O/jufNgPvwu+u5dGKf1+zzB6q3MgPCShoR78gpXCz+zltjE4+xpt/iCsGq9hQ4qG7DuNND4nZDlaY4fJJb0NrpLTSJ72E0Wjik6gcq1EbkdnWpXggENZknNcvHIFkRf5VdvGewkTpP0SbOjCdGPPkGyGcsznDUQUhk4YY1UatfDDsKVCelw7yI3WA/cYLEBJFdQaSpfs1mVpy1nzf2EdX+fSUyW7g8v+J4vq+TMATrirCI6v+oIhtCoX/pnzx9d1XK+KFHPUpAEcyEzPfOFpTKl+gQQj1IsgaS6lgQ3yTv7nfDTNN9VxugTHVqf+Rm8FKBl27cZh9jGrljuSQYDZumGm5cNOrIHrDWidgClPADW4C/z3Mm3KcL8vaAZRyxWQuR9BEaKEyVwoYbUX5ErXJc55vlWvhfFuFL39X+Sq/v1JKxGqBFd0URULDx0ZV2n+YGREmjjCHlHbnbix5KXI47Lf3lkNtj96jfHDmo2iwHxcXZvGyqbKyiWnWwrAt8PcRsFoToVmdxKGZfoG6D5nVublitKJt9RGZqAIeH1XFQ6iafZOO/2AF9AXtWQ8U+3Z36/AS9yMVqedbJ/r78BA8PUTFa8zF1tLmSsV2zX3JVOYjrLrN+Vwj9G65jkKsmLBTqUrF4YlqXavzuOUkmgkowg01yrCP6V9cS9C2S9KI5QWoe65GWK45tV8JnM67JNR4s96ZuMAiohbrp03U6JIvZbvAEQe6y12DCGRhif7LrXbB40hB8CYLxiv311Fmbnvvvq7g4ooAWAXdCEK6YAe+C6vc0cFCrH2UisrXfuIzoR02pEopgQgqFn2pIHbQL9hXIPXko4Bevji7kjQ2dolFXGuGR8fgLEtKE56C+vDTmJGMWuml9wU9aOUcAjzET7GpEqYZ2DBZfCFAS1CfyC1opkYH0wSQ7Kw9L7XotWI/1HQI2krs7a/vcXKBnnKwUj8jGBimvL0yaDZkr2fKAoDXy2vq1mO9749S7ICpPMJFpLO3zJQZBWJYRo6Ajenwxx8t21cCsgZ9CBZl8Lnhn8iK6Q4/cxRB2/b8d7l/owQzebKqsfigpPP7y15QoTAxIXeWJ8sf1+Ukz2ctZ/+voTPySyvo/fhUVc8H2cATBcMatcUSbAhXBesalBdyanHJS08aax0yhXDAVdMpqCFxbETUXtJlcGkvNPRtRK7HwCUdNcS6GRkoKuKDij37/wD33nM853+/7c1/3dT6GnjGs2tcD7iywUbYcZHZrNHcULkNNCmiq0nSFh9/HdN4GwFkeFCRY9qHVnutnN/9xc9LPMN4rPO4fAWXmwL5XVywD3Jhq7cU3N7vIcG3G+q+BTXXQcwg9XrZohiNq22XJryxytFPWrom7cEebw6mkqQ7hiff/u5TmcnK09cd34j9xfsPMKU5YBMicCUsBKwHQcgOQp2pD7l/1F74UI734uvKcf/J5q+TPmzsOO4WOW3/d/J/R8zH/vTAI6HkmqjYAz2P4J+unYv9dKbPO7SlbYb075z3Kbu402ADUG8Ajh5EUb+XFGQ7/m4r/3f9oF/SfhVM/j609fk9epzUPs5JA/uRKiL4L/ObDTbheSyHqNuVUQ0mcwVqzwICeiJJVABgbA5g7aytW91LVbX3U2GO0DnOmqCxmRgTfAHbfZ5nfCMhaTiMKf8XjfPGLiOL+wuxX+6Pi4WGIe7lhR//8MyGLs5BB1LY5w/4dlhHoWwQXwuX+nWiJXheAUt7Q/2TgWA2tIXbLSUbgEtPkH6hKx7aEKkJ7gFWmSzz0X7rJz60JOvOyJYunuoPOPJYUQ8AeMUIOq0CDrKEM3QQPxbwKrZ4uUbLWk2eCmsZNSzo12rB7Z0f+eV6NeZrh/OUOllJg0Hu1343Lpn+5XEAtylcYQvAQ3dqI+CvbGdZ3MTXehDadvw1s93Ek2W5N+xJijDVdsnrGSvzoOxhsMiV85We7BKx+iQf605J2BWAb4TWpIfuTEhcTFM35JpT3kPxpF+JXh49HPvoJG4aNddDkCkRrSvKxMW8rb5BdTMlQ3rhiRt4x+GGn1VUfmIfUTLt3MscfimLjFQoRJ+HgjxF+3VNS/fKLPXqWaxrlLHOk4mnzf//L9CRdICXWhynZZPeYYtH3UMzXJGsB25ecIZjx2x6RU0a8jXwmMq1/eeuIS59n9FOFYEEtv7cf2Y9VmkVkcbeIcjt1Gt1JzOVeQuRleKV3gH6wT3+wSVKQGC4A0s6OHT+bGyKdDc6k5YprE+YyHH3QVFiARVh61hcksDxju8/Uwud9LzJ5UTFR4XMYa0L2VowSQr5kMI4d5aAcnxK9tOWrb5tlNvG09TkpXSeHdcEQ8Tn5eKULCeMZHcMsFg8PVgUytdbl0RdBAl54If1BHml4barwf/p1PVgBjbmmLXJo7jXQE/zcjV8TWBLBcYbFe0Bq7SfQkf8pnHXHiSCyqUUbM6sFOpovpHwu0QvkbuHckU2M5VAMFjWIG0EHv3lnoMe7S0hWCCjCjkNnu7fVkylP3WZ0bCqsf72nc8eefmQzISlhQmmXO55dZwPBmSTtm+rqxQkQF2fUs2/z9bGM/WjL1ZZkKG7EPR2J5aksnoXk+RHo0qXFARcvnsph5BggXbSULGpS030r0DsO9aSfzvi9BOrVLPDUNvXKDzNYXUnRXBDB1s0QYREovndsDF5mdtUqMb/LEuSjwsmFllZAULPOmWPafU9RiLWHjL472GKwAzI6msX6jBdOHjQXALmDjGSh1wYgDbDs3nr4ksfv+9yG8xWij+5Bm5NHTJQzQyBLuogknjBMOPBHybcswL+3V3BZNlGleJf9S0L9Yzdu9NW+OXoEDyvivT93B51yw+QpKcgidj4zBfL539uK9cGDEi5vE4rTEU6psDW4Ubuk57hpGuaHUwnjxtvMbfrsIt4zsMp4AkAgyapnRDeO9k8fK8hxy0kB2RNh0Sa7MI4C2jYhfhqPnxFx6JuxTVatdSXV8B4A9DSzCOZqEl/j0495ytAKu3a61NofPzPxyMwv/SaXBbhlcdkel0A1fwP4w8ooEbbrArwLZPZar7cXdJlfcvy0zUZYPWdE4y2rFcUngkyZjVNnuhARGY/x09iJIckQA5ySOiWIGNAAX4KGEysyNr2156Cseu3+RClm/Df9WfO8lnpGiAxFptSkELuDHuwKbsIeA+dkY9JUWYlm6FfY2sVYdnaOb2Wy5CIx+wTdeKHmIURndqCRA8ZIgTzE+HZfvpbOWV0tXr914/ZAuMJ/JfeHozcPSeEDEip28Ga5RIWGyRrjGsY2PzhAy/QHlbO85SWkw98nvHRIk8mcjseyk2fkal3ploWZXezqRGbb2UbVpFo7hPUmYG6f7u8Eh7ipvC9/2mgLxuIs9Y7lXsX2CuMo3gNUD+7FsrP42H2D+KCmMT3plrkUNG2cC76KGL1u2uJ6vm8D+K8OdNyp7gHGO9j/G9Mzlfd2erUZJdtmWEz6uaxs3UrL8TfIGs4jpKXRVRXw2Oh/f8B8gNgiojCeCBivbd1+bMAbiIOPNsQtQkYbQcEhZ+A4/if8KWr6UmCW6KNvU5lt5v3rYy4kAd9agGxv2vu+/9jVeWUMFywFed263ehgXVBDL7WVbvVG5IpL5DwQryB17hvTY8XHkwd9S1WWqLvIajYJ+GNqEzpz37waqRxtPJE+NRZSbzmQBtmitCY0CdOz7sGmPAqv2bJ29KT5uEvZE7kfmMavc2TDt1YSWux4HioB0pdQhRurLarlRlN9oHCvbnTi7KE/q9ojIgjzLFpPKlMxhPqVVJJ9yY5TIMskEU9RUzCIS+VLX+k1cGf1rlklvy8mt0Z1DIFt31B9Bk1kpkK4sDZ2SVVxmmyWvac8i5cx3rs0IwgUVehlIerxdoqopNhLM52L6u3AuwgjKzMdBLtSakjaU9y3bNeaiW8s0NIsdpMm/eLdfhlQ1wVZgenwknOq4W5gC5dBIMCIsHj6/AgD4f+jXho9Btm01pLe8LDC68ylADyAgKjn8B8Y0FdWOUauqRtAckRG/nLwQcSc0FbGCQ8/xY1pM4PGUcuzbbextnAExaeIe94U5syZC6m+Mm2qaJOe9tQmDFNQ464xAxf2TnUZlG3h+cI11BSI53rC8FuSAYK28DTeA2SXgEiPt1fMSGB8D4w2yl4Ga+vlfj7eUVkCL1Dn3LW7M03NXPpkeMXYajrqpgejKXjhKSIRxMtUMiKlJz/H+AysrUuj1PUIwjTeFoqPBQl+YG0JqHlzy5wlq8RyOtOgF979pl8PbNbXdWVPWEbtpD87yfltRgs3Ua3JuGKPduhaIakwdgQLpQZ88s0+XvOp36KepqgJGT2/s44kAdGSqBKvLDt+7ZPvDP2RCWJkxjaN6M6ngfhNSD+BuLbRWjUwWUiSxmh0sMlosl0bhtqtyfiT2u0WRXUptmp51pdRTEIyQwwxpdbv8Xu3NLsMR3h/dDVe9/iSdLI5G5r5kNT55YLcDP4hmDea2jSVIG6k0MhTzAOttbYcsXz9h/0KF8MQ1jyLa51xewM4wdhVSMTCZRi417rHYnnfezFELOJ83t7i46IvASErGbyeuw21GHgPVqQE9wJqELkd5c0e08nIDYI1H4lCJLCJKOHI1efRDCzX+h/1zGu4oyt0qoeSETao/ziv4i4Jgz/NtxspI+Jl+WNqQW34wjmZwR8GAd1wwhcG7XhettqNNpvnHElEaNNwD8Dt9qehlyVR3AT5oWZnN6YIoRsp4xDsLbcqNga9JAgXtnuV7TUc9yOOyzrEo2tnjRAXIjofb07G5C+bsP3yIqo9T/8n6NDVuF2fUdKhDqyNW1F3vXpmVCSeL2fBqC44iUoQocNr0WYXx/g2jZkEhlt3Tw959QmwR/pajmB1LRtX7fJHN9BPwSDTkhHq2eUbtN365EFYPGmANsZua1oqHQd32yTeAiBZuTluK0qxrhK+pf707JIBW3cmROPl0Q55zQjpAlSkmtGIjA7MjTQDERuATZ4rdKHUmPwz43QXE5HFRUWJ2BOF9hzcSpqAT/DiNbh8TeoxHojH5vJoxell8xU4qq85K1NQTFveANwj0NIIEN5ryyqujRzwulNOKnMS1yRoIbVNi68h5t8cyvQDcjKc07Ip77jWlMIUT/OyRJJ2WhDhzk5v2IrRN4LPs9JwMqaQMlAQGcq4g5fEwHGgamYlqdJhhAScD4uIGZzXeZIKw0Q3uzjvPgQbRK5Gx/AJ1SzqFB7YgXsuO4sZVBZnnCY46MCHNd+dwKkNP6UdewvGubj8g7ep75MLPUE2d/3ciww43A6J01Bpokbp2TqYuY3ZYRcMhsmlq7+kJ5pQ7rJBLpsKS5wfXic+57ZO1fmZdg0Q6vN7LRXrDuUxMN/3wtdMXetbx1uWQ0yKn/XlMnyDCMxPhDROfbWR7S/QQvlV4l2vu4qjm5pcLs9Jd8pZatXsytvJ+7cClVFNaEQEigw9sm5vZDOXnWC9TqctsPmNTR94EIdfZEiKnYhfDSpnAln4Y4Y3mAx3WOvFaTdhmGxYtHA8K4/LTepJa9NoTzO26fl5kA/N94bz5cKnaR9dS/2ccgjGnWjNfG6+NqV6k87d3RazpTqpsIqDei1TB37L8UnuEiDTOqpKjKJeezA9mvtG+8D8fHGjBFdhyIrtPI+peR6qbUsGO6Aj3NN9ZrtqXOgxuew2j3WLdzklkS2Ev3itiWuu/qB4cJAROX23z6YpUlcHiM469tzzbLZ7J2QKmc6bmCSHbQ+S1lu+RIl5XFlxXEEVhGk1Ncrw77Jdso13j7AInHPQ3736W9xYAGTAjdN5UZghbCOQ/A/lX+2DltpcdRPVoio856BFK0JaXjt3FXZXUOFSEtzAzQRMoIHDERdlC15DncnHb97RICL9CG3NnfAuHe3iov+lPKNz7lt3FyvZhTsVezL7fzqOD+bm5nJBHiX8VZCS2Zg4ubRs0Ijal5ZqUWn84Y6xHubbok5aM9l9AUaPVkP4p9T7+8NpXvAzjYjiWq+2Ns1QMirFl+AvOMJJT0YSUpVBDuPblv27wrhRddJFhHJ4nrQ7dgy2fz9q7s2xvmziR6H0bPlZXOHNk+g7nbZTlCPKQsQCXbNYkXG3ey69yQ6OF7wWUvUAyBBtaNDU88bD0AVXSAz3/CnfI3RekUN55f6rUr3cv+JIOAiE1/bsxv2711oa84zeGiWwaAOEeWZOqqrE6fFV1uQyxI7jrbTmKrVCcgL5edqsII/WwqblK/rkKzeAuPt3sLgBI6ovDlqr83ypbd/s3H3+T07xHUOPdvKYjBg8BEsdYoFnLfKoZPJJ6HKbmwA+Z2Hd4HwmNmaVz6OrujAsWLb1g8ID67PDkh2RQxHzfWBWvravJNHoFyLGQyE85nENFPMh6NSEw6w6GcEE5NLNEgW1sne5rU9Ibjmu6TOdlgPuSwSSNIqAZUTtOczVT6McFFIWUn9h1P12BTDbPl1WGU/Fci4XLyb4vdhiB7mAzmw73n68WshPbz1dcLki9317nGuZnUoiuahWvEafLzekDRibJC8KLNcyTJwhf9U3Yt/39apwNuz0O5aKkcxObPRzZuNyvD/SqwmRNdFx4geP0JwJByCy/VQ2SphHvHpPn0EFgnO64b3aPexWWe5E1QOJs6Lg8RauNR/C1rW8mtSAfU+TXDoHvFHJtGVqaqKckvbqP3eh+bliLk0o4lxOKn+5zxi9jySRDV8C5xXjDKvMl0+GI1LjBEucGQ7ddNf5R+x4t6IX8+tQSo1DudN34c9wdmg6LNVMORuU59bbp93DknFV1vwq+XiOudWb9sAGsx32NGFcEYE2PO8/DOgFDs8LNoDaWv6JhK99xBcKYhhEN6ZqLTXowvnRwPZ56XdR7AkRL3UQu6nztEVsPitGjOlQy0cKshryWTwpCNXMr81cGw13TOnsRKQRBMvzlPiHzd5s93j3L8bbueGFYw11uh8OelwlBk8Tn+dEXoszdcYKKGSK98SwKAxqFpppEcYR1p5KTd9bLl3wSS0+OKYNLwLwK6vDdo3xpA1Avrh27u4IfP/rUWSG90rqh0L/S0u9CDNOXAdffG+zNIqN1RXmtmxViR4zLK7bTCNVLapmFG/vNYflAELcjGodX+pvW90FEa9BF2YPJRO8gc0+E0Km9iiAhsdtj9CstS2v01QliDPMWZWdeE2791EhuHxfVJOWKpuXk3t7I/TzWbQVmnDlX+a1poiTRCKNnd2xIth73hYg9aIZsPSsNYtJEpC1W3JeV2Rjeb7EQpvzXUy9+zmh7LQNAPUrACBgkEtIcpoXr72H+yrluI0ALeMRLTJE98h+qkjeiqBDvHJjO3IYtEOYofhPPBhReHOeRfCArjnNCtqcRex/VEI0yFEuBzlvjzm9A8EgQ58mg8X97GOHcoz7eu0ag/8fzzbf2MfJMYSUrHaQJ25+8xYPbGFn3+zWQZ7wiZOzaczZ9+Iciw5I7YVHNmb4AFdymjFO13pIMGMDdhl+2qtDNl+xct3S5E/yJnOt10QRxuI2EKHuTigmn9sehzYvUXdJULWVlKkjp7OazKL9jCFNi1KVgMiz74ytBmYtP/otLspXAvrj6SypNV73tJGbLex9C8SDs6PMiY5DEZBn+fKibrRG1rjyGqAeyx6UEWWat2yjELM8rOiz7vUfVnAXjvxl6fuy9SGAM/HiVd47EYaPO7x4bqf06OJ1VrKgYMCEjeuEsOjaHVFTkHMB/SmYSugGEMb2/ZWTPsbYhJwXipkTazfoa2277JI+pmU3pqu4NebM8ILHWX/ljEV5NSPJFNm7+/XZr4zc1zqzhBkiTgI5mPVJ8jlRhjqS3kEuGHf/ZC52TB6wkImLf927o8ee2FniIpicdk3VEy3svUJ7cuBMHeD1/kvQcqkYyCxHIC6uZRDFT5zfr+V4C0l6MmSLNc66uRTYyh7usqHlpbnl87ptM078iAwc+BRdDGqkqaolOXnEFoiVsbbckpX0ZBxc/mqXOaOE7erygkEs0f7s+Bs297ZHgboLkwfziKox3G/lB+8EGcmL8Nmx1a9uo5xsgo7nZnqkMgWnJm5a+Z+G51GCh1Y/u+lkLjFi6VNLbyOkhTqyr6FrgsxYks0eeVg1Tk3ATjyyD/A6BpURjHBerakXicwKkx3is2huPB8uY37UccQTJ4Y0wO/rn07aRi+C3G2znNpDcabnbalYVqoKoY1Sl7ZHMvwNopCbZtYzHGOZJ78VxvsjNDwLlZx0p9msDMqKYUksqsF84RPnJAeDObuvG814FLwaL0CxHbAdyBDZLdt4v08UpMfSzIGtnc5j9l0B+MAe4Mu3yTcJWRHY47ZVOMncbB84yqH/aOty9FGDxDB4COT0Js1yg87UN+xEx0A99birUbay0b1o4JOjn2Wv7GMy6pYH+5xxwGjiSupTkJnp6s4gyfKF9R8KrF25UIOc+E2ooXyxsjyW5bw4pwdmTfAbLRVvr0imvC27dwy4rU+EgY1io5y/MXHRlgYxhOY5Cm1G8VovcSc+klMiAFVrmsAXUXRmA5CyQk8vI6T5EBxecxUvnWD+mHOdEqUwKEVAfnBPD2PFXWtKYGDlg2Y8d8TqxQ8MGhwGBzqcXeNhyYt9i3LhwcNL//yuD8+0rBeS6TryFT/aay65YMWmz/UGMwd5MEDOpgfG18XZOX3jZyBrJuy3ZtBjRrg4k8c7jd8zBmAuyaBofs3h2n4HaOUkm6aCVgJ4dReOcE5gwDtc42pBTJpAusZTEsQVu0zNp36mf8J1vmdYxPGGpUvgeIF+lqMxwDIzlPCMvFrnRQQlKWxfion3wC67iSlrrXa96hfcaVMYn3+EI8SBqL+PGrvWmGaOkkOvGkSjaEK7WtH3u6fqSNP0WSn3soDHbxyMqaq8ynJB6zWxtiYWEruFl+kq6Q1qhISZ47J9C3NWrDMBSf9Wm8Xw3N5kKBQbQNQPh2XoDeDWzQ3g8hdXVkHzbjGN3PS1/8eE4nT3mJIucL7SxXE0NMI6FJaQK4aI6hUnvuXvTXh8/bb0qr/RNoh0Gsu7K00n0A6e++BgjbUfYUmqwiDXXmS3+9DkutMq+viJ92NM1Uoy5Q549lsWpKiMUM9SinAleo2VuxA3m/qLw/+gkqSXZk6Ylj+GZ45ZqK5v3bOSZlpKpRD3Q+AKnR6hhcqvlXpoTNp4elQDjVcSHdOEK50cpj5m2nr05b3Q/+marJ1CXicQHH3Guu3s113xstqMuOyOyR95b/LenazI0YPfkXz3erXRBC9s9/EWtNkNL165FA2lRUlnmC3iZrxGG9JeI/jlGITmlGRAY/OK0p5Zr9t3RqCAOqKzb3q3bYLYjkD4KDqxtdLnEtotsyIZFyTomE9a63HIHUkr6x9bO4KRVtnu8iw+KEDaL+7ZczwMi6kZ93PispSCy7wS2njhqPFhPJUmDJ5LVowOLvJ/uP/bLysh196RZX+sRHXEXprDLVVa6n/fbwBvFK6ZxlDEtpd6fv3ZaOdXXe2nrc6pdDImCeBqBXmsqwcm6gqwsO4WTxBuOnUUVvnHMBJtXl400NNxqG3MI/yx1t6ADjd4ewSA7tWzm6ghdu9N3bnzq2U7tBRhBM38cmMuC3zqFpj3yNLmes/hM3RN8QvNpY+OP0bW1YUlWApWpeCCABwv4Um8L9jKrc1+0MqpB3o3m3HBaoyowvrvK9etHDcdPy+4OSzdf9k6G8JSrZ37ab+9geTzrnaLSGGkeO9ti6lqNKQBB1nvKh5SzpKo8077X+dJr8pwlsRiOvm+qbHfVoMBictxTRp+rao3LO/gd7Zz0tyJKSQ1NfWXO3Zjk5bUnwoQICJ3ADvzNwGxstCDG82GdoyPQL8k6ZT9U6+Psvf64EFOE3ZARjnpQy0/hW4G8Ktl8wJPlQ759l5p/YNjHxMXH5+Qk8VcWSA4mPFO4EeMB+Cw/Zd1Yr/5NPzJfup3BwgUHYPyliv8u88UsIuwrPUMVH/25cwXui2KCsxfqw/aYVbvP/jyyXpXlHwCcoPnHRqxwvTwRsja05KX1uk3jrgtJHSIayxoPK7F59Iz783yr/S8GDOirZ0kCRtPUGdHib3YnXOERI6Il1Y1FRnRtce768IrFbjwJRrH8XHejqSETm249wSvQKrvb7LZYhzqmcWmWK/P0Abeug1mTfvLVxKOdjEGP2IW+p0njlinqGZ1FbMS8fAzSZrF9uIjhRfot9zymiRPB3zPyyALQnD8+r4eqykDIBkRD8MeLmRaGUmrAbUGJS4pkdpHm1hE6JyuL6iuOF2FfAppRHMUUbxzodE1KZhzwprJfO2OMJbB1369L/c3zaoJ+LVqK0O/WAQkX7cwvfLlkGtH3jhlNXz2vRzDVnWu/E6vCtreWHuQQTT7wPmlC+KUWTGfKyoaJq5Hihb49hDIBQxgISUw5LOHc4yzz2KcLUr/EVJowie7DWOd7NHtxoQF1wzP0/wcI0kVoNewqEY2IfGykZxqEvQYxg5txtJYBGv3bgCF7QfKZIBMhFnj8GVHI3aUmWC5F2eH00OowJ8mPi/OQ7hglqJTPqM4gn2cMxzIK94frF5ECY0qn/3QwNrnarLtSTIiUTFx7zrD5w5TBGwAT3rI6U1lhezu0KnLLwKHaT2+kSrFLMl28i8ujPxGLsTN/fojC5s7kGQfVqw44y9b+Nun39V4ss44DuRa9BfdRVPw6DhAycr96FvLb4NmzDvOd3UtStIAxXLwq18H8wD4GD1mLgdYp5GPWWzBrZbwUgZcEpZlqor+fjiM2gS1Y1Apddr2B2y33v4t8qEkCZ2HXX7b0zLxEszTs43Bx7UXGTlgeuCSRQyPK9FNtF4/s7zWO9NtYoLJ4ibMOZjM4k2gDzQobd10qmrvwgMHEjI7Dgfhy147PXhezjDugyNSi4XfHzIzTqQas7YxmS0XBukaHjfovPxKMIMKj8JMfKSDcvKYWwsis0S51LiNq4VsL8XdZKKflbEyNp0OiZqGgpTCa/+N/H3by4hbfZ6LeI1qafaoYzQGvdPy5aUuRWayZ0Tq0LvJM4kR+2KDQCgPFQEsCsLf5gKGBY6ZpXUJgt7W+bmUxbLCkro7WzfzDW+XYGzSPEBIFbHIxN+GJOG50LPW/pqmBz3e7JU40Xb3JKYGbzevOFD56Rs/6Lm1UHYGkEB+ZdTk+CenKUuTmdJrzW8EDzoZeRhD81Jm5Jnu84I2x8lon4CQpt6RhMYPI1gdr8iDf37xDWmXYwsjwA+O7PDyrUA8QIpwB1oX9ECCrxglvucrOUOyBK6YszQx1dbtQy2Xn16SXBkzhljVudLUisPfGefF3HWxqMVJeWuIkH9YrL+2GoflF73gbiVo+WvnXlxAW/sNnPS0CP8spF/8fcqVW3w/EtTRjZhAPKXqAV68jZrbhPRNmCoqiVEvPngFjWT7G3TA8dDi2oNM7fZB3/67vQbng2haBYRfW7/I3+2kXw5RRsxJrWHJS3zDseeurxJBQzbl1ZiWizqx54XLjgNVkg6C/0eoaEitkssPme6uw5j2Rvikt0ZNuyvFN/zqQitxjo/E7Yc4vUEOIYELa3+GGkL1DhSVWMh87QVmlX57+DVJKpw2SzmAJX1N2gL8zpVsLiM0XyC3Z1VYJeLCiu8n2yYs7UqSay7xz8fmt3LjoBiP9p9lxHBt2/dbzENfMjYDgCSayfqMl1Ld2G0zkF2eV23j/SWrajVuds6B9OOTXaEeA+7c4uJaYqm6evfrkR/yGwqtKD+XxJy1VMlQwYe6MQFzwpdnaPmNBDo3Nb3s7f0PKQ+3Z26yZRYN40BuFJNHqXH85WZ67xKE+VX9JpXg4BCVthzomvvBJzTn61tedOTvTfPaN0iPoLrdNg3IllDuzYfQwP95o6pUBMreejYgu0A4WbVGoITz29y/Xz0Ya5fn4z99mEc28jBDnQjx+OlAnuXz+lhlXluGnuBtUY2TuUeOi9VV7/cMPa/WJEL9jDAw6IDJlYWFG7ReSUy1rBrkpBeIr3/baP+DVxYcAtueOs9VlzkZpP9a+z6GDNtkylKKuVr4wzrjhfCUm1Prr4o6Wk8VtQRS8t5RsB2X2yifM9TTFVFRG//8H1BLBwjWAe/MP+EAACTkAABQSwMEFAAICAgAh7YfRwAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAICAgAh7YfRwAAAAAAAAAAAAAAABcAAABnZW9nZWJyYV9kZWZhdWx0czJkLnhtbO2aX1PjNhDAn+8+hcZP7QOJ5cRJYAg33M10ygzHdQpz01fF3jgqsuRaMnHy6U+W/C+Q0GA4MtC+YK0iyavf7kormdNPeczQHaSSCj51cM91EPBAhJRHUydT86OJ8+ns42kEIoJZStBcpDFRU8cvWtb9tNTDw0FRh3JJT7i4IjHIhARwHSwgJpciIMo0XSiVnPT7y+WyVw3aE2nUjyLVy2XoIK0Ql1OnLJzo4TY6LQemuee6uP/X10s7/BHlUhEegIO0siHMScaU1EVgEANXSK0SmDqJYKtIcAcxMgM2df6o5LLH1Bm7ztnHD6eMcrhWKwZILWhwy0FqjTynHMa1hd9pGEIBzekXfeRCLJGY/Q2BHkelGdSvMYJpo3/+IphIUaq7+QMHacg+dtDMDEpYsiC61CtHZGQFKbojrPi1rNEDfhUh2NqhrSWcxoYukgqSQiEkE4DQlGqVEz2cseqcMGn0Oe2XeLaCKhhskLIVDSr8aqhcA8p9wMk9NKd5xoNiwKvvJK3nwDPGWpxGvtNlzp7v75j12D/0tBNBuWr5hpbQL/MU4NfWvLHbad5tWxsGP9HaeNu0P5wGQqShRPnUuSJXDlqVz7V9miaGwDVdl68ctGtNMDT6PRFjCAlwHSxqgyXuxHI0MTCLx8w+3i9MRmXD8tIIDb7BFl+0Ou7jjNi9H4RH+LXWnm4L7H5Ej/CT/fNbe7PEXievxJ5d2czzPxnlF/xPiOhG4oEH/7PsxHLTI4fveM8xTSwrWfydOoGIEwb5CwKWEBVSzeu6kmvEXret6MAp3F6Au6y0IlOseNcFV/owBCYblFbl1stvAZIb3fkbv0kJl8UhyrapYD22r7XS8MvNFNx7for1nmwB//CN8KA6OmhA1b8AFkEmG8JWqhFP3ihikuWUUZKuHvji08k+7/zjddvZdq/J3sHPPylZPbZCdjvwHdxl3uoKWTnhTgd8flJwEHu8ZKDe6VmLJkS/l2LNaNsB6S0w+kk+uyXVIqkCSQl/nLOCvEmebozQuhA5LOQdO8LuyWijRI1yF1Zq3UnY6cyppsRJrDvYF1H+mQS3USoyHj6I85eZ/Ksdv3fDCQSnQa38FyvVcIZvNJ46pV00Am4XGIlQ7pafEVau1Rytq5oclzUrXNasccuWWuWU5ui86ndeNT/3qsKgKgyrgt/C0y3/M4ZMdHi3tvR7q+Ow25nn8Df879igr5BY8CyGtBXkV5VcO4Zvw1yPl1Xn60r3fcK6+hzCaKjdIKbaBEc6042J3s+KjHcmBcsUXAcpAG8+oVnXW9JQLYozoOGWV5Yon3OaF+5hmy5ESteCK7Lhql1c474jFnN47kpKeMSaUDq3UoPYXjKaRvfvMbaTb+N0S5qjnjcZ4Ik/cMd4fOxPRnvSxZOudF/srvnJi8WT7OqVdk2D1tWRu8vY7mTsjUbDkecfH4/xaDh+sS9oNZzf6ormC9p72kwH3RL4mRAMSIPpcyW3buMfLEa78q793fHZ9IIFBLczkW+EzL2Z9lsf7PvVPwWc/QBQSwcIPmBEinsEAACbIAAAUEsDBBQACAgIAIe2H0cAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztVtFu2yAUfV6/AvHe2I7jtqniVlH3sElttakveyX4xmHD4AJJnP7a/mHfNMAmdZq10lKp2rS92IfLvddwzuWayWVTcbQCpZkUOU4GMUYgqCyYKHO8NPPjM3x5cTQpQZYwUwTNpaqIyXHmPLdxdjRIRqmzoUazcyFvSQW6JhTu6AIqci0pMd51YUx9HkXr9XoQkg6kKqOyNINGFxjZBQmd4w6c23Q7QevUuw/jOIm+3Fy36Y+Z0IYIChjZxRYwJ0tutIXAoQJhkNnUkGPSMJ3aT3AyA57jqRu+x6jzz3GaxCm+OHo30Qu5RnL2Fai1GrWEbYwfRM7HTl9JLhVSObb7Lv1z5p+E1wtikeXDu3KyAYVWhLvZzmKz3cgCWuuotRLBKk8T0gZqKwdGugYoPGq3YLPXNp2XZ0647hbDmYA7s+GAzILRbwK0pXDYC3LgAysKcCq3MXAv2hDtnjmuibKiGcWo/UaLwe7tx3fnPok6KvdItcsR0GP1kx/v0GrFOojW8djzOkzGnln/3nKbvRW3VEpVaNS0gqJN937o3uue0HPiDk63mkHyMnFUCkZ7xH0Ulm9tuXGLpEu1gp3SzA7jcJhlnsRkeLpXnskfXZ6sBLGy25RK264Sd91pEwf+g6VJgjJJZ3nogM9jl6xYg6Yhbhrcp8MA0gBGAWQ9UZ+eE1bVnFFmDt3a8xVxvySFP36dop/D+LEM0jh5VRns96jTNztIr1ECTU8COA3gLIDxVq0X2pTkmwUUSorHTtUz9RluD9ohNfu7qiRZ6lXJkj1ZRm+jygvtyXUgSpQBzYjo9akrN/H0v3nyr/w3nydMgNlu99bhfk1l/2vKuuulmts74a+qqpvaZW30l/a6PgNR7zoahSvvxU9QSwcIFLn8D5cCAAB5CwAAUEsDBBQACAgIAIe2H0cAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvrjts2Fv7dPgXh32MPr7oEnhS5FRsgbYJOtlgs9g8t0R5lZMkryXMJ+lLb9jnyTHsOKdmSZTvjGSeZAp2MIpI6POQ537lRSsY/3MxTcmWKMsmzswEb0QExWZTHSTY7Gyyr6TAY/PD0+/HM5DMzKTSZ5sVcV2cDhZSredAbMSlwLInPBtwPo3DK9VAIroYy1HQY+koONWdcxJIGkVIDQm7K5EmW/6znplzoyJxHF2au3+SRrizTi6paPDk9vb6+HjXLj/JidjqbTUY3ZTwgsPWsPBvUjSfArjPpWlhyTik7/ddPbxz7YZKVlc4iMyAo1jJ5+v134+ski/Nrcp3E1QUIE/IBuTDJ7ALlDNiAnCLRAoRdmKhKrkwJU1tdK3M1Xwwsmc7w+XeuRdKVOAMSJ1dJbIqzAR1JwTu/3oDkRWKyqiZuFj1t2I2vEnPt+GLLLilp6AMISZlMUnM2mOq0BLGSbFqASmFHxRK6ZXWbmokumv56Q+zE/gGS5KNBboCe0wR0OD0RXJz4lJ4oRd1uWksrBjqq8jy1nCn5jTCiKFyEheSEeD6McMIUkTASwIhPBI4pJokgSMIEkRLuEoeZh88UzFeUMAbDhFPCOeGMcAFdpYjyiPJxIgdaL7TMKFxIDduBS+CYEHDZMSHh4tgCRsqxgU0o4dmWQmrgrzhu3w6KgMgQFsIB5TMiYA/Q9ykBjgLZMyuEpAR/GZHInvuEBwT4gdzImfI9oNT9NSr1wAYsDSiqDQoDMPDy4LJobYAiu5AAAhRkO8Ebczfcrue5R9SNUeFu3N2kuylHI9106UidtFQ6GikeKmYjJG8LSU+scFsFDFoCMhQAAMGd25sguGdm9443WXc917VmRhmtRwP8K8QO6MMLbOOB8ohGHnEIaKy1qvPQ3Yv2PHhlJr68mwYfZppiJ2J8l3T7lLoZoPo6bdZjqrWegpCEv/bqrSj2ifjZkHiPBb2O231tcf1DVry3uOPTJv2Ma1FJeYG0tcVWZl5izBHhKhN4GKvrdODzVjo4wYTgqXVOwIwQdHKCClqJAbKCh4O+zTKwBoZ1lyS4bPLESZ0pfutlCgjsch3bYWvICiNHHdxhdd4O7xzCASc+RkXIVRgZCAeWnEBW8HDejsg/IIu8TFZ6vTDpYgWIVWGSLZZVR23RPG6aVQ7UOrVFTk0f59Hl85Wia05Gl1WbLRQI6zrEFQydMuW7caonJoVq7hytgJArnaIf2xWmeVaRxgK4G5sVenGRROW5qSqYVZIP+kq/0ZW5+RGoy2ZtSxvlWfmuyKsXebqcZyUhUZ7SlXB5ylpt3mqLlQTQka0Hqv3Aaz3wt66bwxOyLA2snxdlQ67j+DVSrAMaKPBtlt4+L4y+XORJV4zxqS0Cx2YZpUmc6OxXsPSm4Pp5OZ+Ygthmjrja9VFjZFUtYuhtqkVJ/WaLeRGf35bgGOTm36bAySrE+vjW9TjzR7T9g7E10qnN+Zau1Wv/1HswVyuE9I1ZCzsrMCq0Oq/L53m6HrLyv9CLalnYEh+WLXDvz7JZaqyNWPOFWjm6nOQ35844hOP1/nZhMMbZHUxmVu8E4grHcn5W3yfubmlwaysqammopaCNtSXx6jnDuntW3yfubqnAfN3WalFZIyajzTJJaaMhHXTdxRo/lt7LLKneNJ0qiS7XouIEh3NjQl2e7Fg8x6cbNja+NEVm0tqkAcxlviydh7asHQz8na4unmXxL2YG4eWdxuBeAWtHut5ybKJkDhPdeK08jcD+E7bqRmMzK0wjoos3TrX2KW1bb2/YsvqxyOevs6v3YDUbWx2fNvKMy6hIFmidZALZ5tKs7S9OSg25Km7P66hFvNzhP7TlPbb90bWHbKQ2fOfGWjOWKZau7g097G73Hhc6juQ8PVfp22ediY9pnsdjyY/GcpFC5mgzu3PkAItYLNCAwPxXhUxrU3XWqpcp8g+Y8vKMVGu9b/gbGpZNHcCgpk0q3D6kjGV1kRf2iA77hTsaZWrmcB6vGYJfzdaqsL05s+f9aQJektlya6JobLiKmTDBxJhAam0EN1Mj6YSGXvCf4J2eMSGG4ejDYjaoq4LnOrqcFfkyizf9uax0Ub1DmyOZ1a01oBuwZDECjG6hIUdKhO0fMHf3GsdxAI2RfILK2UBzvQo83hGiiU4XF7rFLtW3mA1bIcFy+ymPu4FimtyYDWkADKfQnmqtU6329Wxwh30Tc4Wn3b3btxZVC0A/I8Db6bQ0ldUsHlhAsVzsk09nYAHWhCBALZA/usDCGOePjQ0SMP9bGyg6xQtEttKuRUeeW23IRwHdrAbaOFodYS7u1G9udCNM31XRz7+tomv7/UpqDuxqYoToHkGvUT6fa/BX5/bnZobjg3WRrynql2iG9uyUt6yaB9pxq3n0UCprbg0O+jM4NQeD7UA18XXTpT8HVA+LtT7VKPS6BSnqFhjyrgmzwOpajMKgM8HfLOoqOG9cZqaEzOG3UMXGP5I4Ntkqzpv/Zm5K6RJPMl+kSZRUKx2naAevMyyOXD7ol1OXxiwwOb/N3hc6K/F99u5I1QXahuINmHUP35f78e164ctvHO44teixrxTtPArZylecex6ndQhg9nwT+CLg0vM5FfKLx75X31jrdY6RX17rbBTKJsV4x1Fs1yd+0bcbHvHMBb5XPceY7HeMAjg1AEz6AHVPX3dG6CghD2yXed3g5rQKSrU69UfMl3JPYOOPOrBtz2AvdwEZHZbBogeBuXlCOAqgbORBIGLcY74S3A89v4GTdkKUqFOYFwaKKao8FUhP9V5LtIBWjxroN7Dl7XVK1EM53o8ySr9CMH5c/noYvEPwXhaGUvmS+SGkoS/jx7tRWcG9AU3soJn0oHlxSInx4hsnu/AOB6o1dMIfcRp4ggN6IQ+DukaA4gHQDH3fk0pSHvgWOQmVPfVFyCnzOFOieR3w5ar6Orm96EEyPSwmTh9U1d8Xlf0pToG6ofpC76CSSYdbAD4TCuoFQvrUgyLNKp6Lka88EQQBDwJQfOj9ZYv6X4FnXmwPin2Yl/thvnLMGhSXD3G9YyQ+sQkzwMnbcDqQh2okBWWhpyiXfqgCXPJje6F74Np6iVwjG+miMmWis97rLXOzQKW7eXphy14rQKGTnJR5qot7oLizgLk6CMWrR4fitkTmjlL9vPfVYXz5ABj7p4kXDsPnPQzN3U8T5iivUI5agG71OIRwi4O6eKt8j/oKEA8Dn/l/3ZcofYhfOYhf9iCe3R3i2SOEeEcVOtxVhh5yzHjcGNvvYduDMWZWvi2zfvrffrTtx8cVnkDtXpI0H946IEB7WY/g2yXlgx9JwaRff1w6lp10ay92R0up6WIT5YVufbQSe/DedaxsPvIWUave/Uxluw2dZ40PWnT6GfPT7weh8/vf6BwTnVU5atHpf1L49MdB6PxxR3Tw0CUYhzOXL3lAofUwgBT7gvjse/t2CD7yHvisCs1d+Px5ED5//o3PIfictj/q23/QVf9vgaf/B1BLBwhOwgoOPwoAAN4wAABQSwECFAAUAAgICACHth9H1gHvzD/hAAAk5AAALgAAAAAAAAAAAAAAAAAAAAAAYjUwZGUyNWQxM2U4YmVlODRhYWUzMmVmZTQwYjA5NjhcOFBhZzEzMy05LmpwZ1BLAQIUABQACAgIAIe2H0fWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAJvhAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAh7YfRz5gRIp7BAAAmyAAABcAAAAAAAAAAAAAAAAA+OEAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAICAgAh7YfRxS5/A+XAgAAeQsAABcAAAAAAAAAAAAAAAAAuOYAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAICAgAh7YfR07CCg4/CgAA3jAAAAwAAAAAAAAAAAAAAAAAlOkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABQAFAGQBAAAN9AAAAAA="}; // is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator, DA=Data Analysis, FI=Function Inspector, PV=Python, macro=Macro View var views = {'is3D': 0,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 1,'PC': 0,'DA': 0,'FI': 0,'PV': 0,'macro': 0}; var applet = new GGBApplet(parameters, '5.0', views); window.onload = function() {applet.inject('ggbApplet')};

Os triângulos [ABC] e [ADE] são semelhantes, pois possuem dois ângulos geometricamente iguais, cada um a cada um, de um para o outro dos triângulos.…

0

A largura de um rio

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 133 Ex. 8

Enunciado

Para determinarmos a larguar de um rio sem o atravessarmos, seguimos o método esquematizado na figura. Considera que os ângulos ABC e CED são geometricamente iguais.

Qual é a largura do rio?

Resolução >> Resolução

Como os ângulos ACB e DCE são verticalmente opostos, então são geometricamente iguais.…

0

Sabendo que

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 133 Ex. 7

Enunciado Sabendo que:

  • $[DE]//[AB]$
  • $\overline{CD}=5\,cm$
  • $\overline{DA}=3\,cm$
  • $\overline{CE}=7\,cm$
  1. Determina a razão de semelhança que transforma o triângulo [DEC] no triângulo [ABC].
     
  2. Calcula $\overline{EB}$.

Resolução >> Resolução

  1. Como os segmentos de recta [DE] e [AB] são paralelos, então os ângulos CDE e CAB são geometricamente iguais, pois são ângulos agudos de lados paralelos.
Os comprimentos dos lados de um triângulo 0

Os comprimentos dos lados de um triângulo

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 133 Ex. 6

Enunciado

Os comprimentos dos lados de um triângulo [MNO] são 6 cm, 7 cm e 10 cm.

Determina os comprimentos dos lados de um triângulo semelhante a [MNO]:

  1. cujo lado maior é 12 cm.
     
  2. cujo lado menor é 12 cm.

Resolução >> Resolução

  1. Calculemos o lado intermédio:
    \[\frac{12}{10}=\frac{x}{7}\Leftrightarrow x=\frac{12\times 7}{10}\Leftrightarrow x=8,4\]
    Calculemos o menor lado:
    \[\frac{12}{10}=\frac{y}{6}\Leftrightarrow y=\frac{12\times 6}{10}\Leftrightarrow y=7,2\]
    Portanto, os lados desses triângulo têm de comprimento 7,2 cm, 8,4 cm e 12 cm.
0

Determina x e y

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 132 Ex. 5

Enunciado

Sabendo que $\hat{A}=\hat{T}$, $\hat{C}=\hat{R}$ e tendo emconta as medidas indicadas na figura, determina x e y.

 

Resolução >> Resolução

Os triângulos são semelhantes, pois possuem dois ângulos geometricamtente iguais, cada um a cada um, de um para o outro dos triângulos. Consequentemente, os lados correspondentes têm comprimentos directamente proporcionais, isto é: \[\frac{\overline{AB}}{\overline{ST}}=\frac{\overline{BC}}{\overline{RS}}=\frac{\overline{AC}}{\overline{RT}}\]

Assim, temos: \[\frac{8}{10}=\frac{6}{\overline{RS}}\Leftrightarrow \overline{RS}=\frac{10\times 6}{8}\Leftrightarrow \overline{RS}=7,5\]
Logo, $\overline{RS}=7,5\,cm$.…

Podemos ou não concluir que os triângulos são semelhantes? 0

Podemos ou não concluir que os triângulos são semelhantes?

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 132 Ex. 4

Enunciado

Podemos ou não concluir que são semelhantes dois triângulos [ABC] e [DEF] tais que:

  1. $\hat{A}=60{}^\text{o}$, $\hat{B}=70{}^\text{o}$ e $\hat{D}=50{}^\text{o}$, $\hat{E}=70{}^\text{o}$?
     
  2. $\overline{AB}=6\,cm$, $\overline{AC}=4\,cm$ e $\overline{DE}=12\,cm$, $\overline{DF}=8\,cm$?

Resolução >> Resolução

  1. Se $\hat{A}=60{}^\text{o}$ e $\hat{B}=70{}^\text{o}$, então $\hat{C}=180{}^\text{o}-(\hat{A}+\hat{B})=180{}^\text{o}-(60{}^\text{o}+70{}^\text{o})=50{}^\text{o}$.
     
    Também, se $\hat{D}=50{}^\text{o}$ e $\hat{E}=70{}^\text{o}$, então $\hat{F}=180{}^\text{o}-(\hat{D}+\hat{E})=180{}^\text{o}-(50{}^\text{o}+70{}^\text{o})=60{}^\text{o}$.
     
    Portanto, os triângulos  [ABC] e [DEF] são semelhantes, pois possuem dois ângulos geometricamente iguais, cada um a cada um, de um para o outro dos triângulos.
Os triângulos [LUA] e [MIR] 0

Os triângulos [LUA] e [MIR]

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 132 Ex. 2

Enunciado

Os triângulos [LUA] e [MIR], que têm de comprimento dos lados, respectivamente, 15 cm, 18 cm, 21 cm e 20 cm, 24 cm, 30 cm, não são semelhantes. Porquê?

Que alterações poderíamos fazer de modo que o segundo triângulo fosse semelhante ao primeiro?

Resolução >> Resolução

Triângulo [LUA]   Triângulo [MIR]
15 cm 18 cm 21 cm   20 cm 24 cm 30 cm

 

Os triângulos não são semelhantes, pois os comprimentos dos lados correspondentes não são directamente proporcionais:

\[\begin{matrix}    \frac{20}{15}=\frac{24}{18}=0,75 & e & \frac{21}{30}=0,7  \\ \end{matrix}\]

Para que o segundo triângulo seja semelhante ao primeiro, basta alterar o comprimento do lado maior do triângulo [MIR]:

\[\frac{21}{x}=0,75\Leftrightarrow x=\frac{21}{0,75}\Leftrightarrow x=28\]

Portanto, o segundo triângulo é semelhante ao primeiro se os seus lados tiverem de comprimento 20 cm, 24 cm e 28 cm.…

0

A partir dos dados indicados na figura

Semelhança de triângulos: Matematicamente Falando 8 - Parte 1 Pág. 132 Ex. 1

Enunciado

A partir dos dados indicados na figura, verifica se os triângulos representados são ou não semelhantes.

 

Resolução >> Resolução

 

Os triângulos são semelhantes, pois os comprimentos dos lados correspondentes são directamente proporcionais: \[\frac{3\,cm}{2\,cm}=\frac{4,5\,cm}{3\,cm}=\frac{6\,cm}{4\,cm}=1,5\]

<< Enunciado
0

Ficha de Trabalho

8.º Ano: Decomposição de Figuras - Teorema de Pitágoras, Funções, Sequências de números, Máximo divisor comum e mínimo múltiplo comum de dois ou mais números, Potências de expoente inteiro, Notação científica e Semelhança de triângulos

A presente Ficha de Trabalho aborda os temas: Decomposição de Figuras – Teorema de Pitágoras, Funções, Sequências de números, Máximo divisor comum e mínimo múltiplo comum de dois ou mais números, Potências de expoente inteiro, Notação científica e Semelhança de triângulos.

As dificuldades que encontres durante a sua resolução deves tentar superá-las consultando o manual e o caderno diário; depois, poderás tirar as dúvidas na aula ou na sala de estudo.…