Categoria: Lugares geométricos

0

O filho da Rita partiu um prato

Lugares geométricos: Matematicamente Falando 8 - Parte 2 Pág. 43 Ex. 5

Enunciado

O filho da Rita partiu um prato.

Com régua e compasso, tenta reconstruir o desenho do prato inteiro.

Resolução >> Resolução

var parameters = { "id": "ggbApplet", "width":652, "height":530, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 73 , 14 68 | 25 52 60 61 | 40 41 42 , 27 28 35 , 6", "showToolBarHelp":false, "showResetIcon":true, "enableLabelDrags":false, "enableShiftDragZoom":false, "enableRightClick":false, "errorDialogsActive":false, "useBrowserForJS":false, "preventFocus":false, "language":"pt", // use this instead of ggbBase64 to load a material from GeoGebraTube // "material_id":12345, "ggbBase64":"UEsDBBQACAgIAJYBIUcAAAAAAAAAAAAAAAAvAAAANTBhMGVkYjkyOTA0ZWVlYjI3N2JmMzZhODljMTllZTFcMnY4cGFnNDMtNS5qcGede3c4XN/X7xltECGCZHSJXiJqzDCjRhe9E5Egeh1dMAgSYXRCGATRiegSyYgyem9Rohtd9OjX933f+773uff+nlvWeT5/7f2csz9nrbPWZ+1nn6uJqznglpqSqhIAIgAA0PUFXE0BCgApCQmYhJgUDAaTkZGSU9DepLhxg4L+Ng0VLTMDKwszAxMTG4cgN9t9AXYmJh4JXgEhYTExMVZuGAIqAhcUFRP55yYgMjIyihsUkJs3ISL3mO6J/D/bFRagJgVZgrgJQfcBAmoQITXoqhVgvV4nMejfDPgPAxEQEhGTgEnJyG9cT6i5BRCACAkJiAiJiYmIrkcDr8cBImri2/eE5UhodJ6D77vTioTE55Cyy1c20+kO/uEQfeERSkZ+5y6EnoGTi5uHl09M/JEEFCap8FhRSVlFVU1P38DQyNjE1Mra5qWtnb0D0tPL28fXzz/sdXhE5Ju3UQmJSckpqe/T0j/m5uV/KigsKv5SVV1TW1ff0PizpbWtHdfR2TU0PDI6Nj7xa3J+YXFpeQW/ura+u7d/cHh0/Pfk9B9eIIAQ9N/tf8uL+poXARERIRH4H14gAp9/JlATEd8TJrktpwN+7k5zXySElFY+PqeymYxdVPcP3QuPQfI7HGLznLv/UPs3Zv93xEL/v5j9J7H/4jUJUBCCrp1HSA3IAMenPB9R5P8CEGwyGxOraU+KX5jTb4Wi5lXR8zPkJV2J/s79GZZDVpGjPhF+8gEPI416MUy+u48wtkMADLdk8joU17wCWr39YSquLlZmkfTG+jTs+30j9K4FkOPS5Hemo89tMAq58nNB29OXF5EKaTAcZMky1uLQVWOw+oKpysQUx9yTe1wHTrNGkAl64LJlkpFFxcE0Xx8md1vfkeb61rhLwRA4lnQk/MRhvw0P3YeUhDcThjRzMx2Vv3naFvt+C88qwbxrji7fsF+gorJQW1Z/wvmBOqS+o54pPusbCb+TrWt/S2wqQvTvhcP6ApMz50i65/bkywEvl9d6JRQ0oa3Jz7EumX7rgVfAhcFLqQZ2CkbwUJI7/9a9Rq2cAkW9qBPjV1fAwx8O1aUQa4a1GOPulwrvzND5H6O+yEfxfAIp0mr/J1TVFdmu3+V7Ylod2f8dyLThu+3NJtgXZDcwmpIL+ZZqcZSUUPFEHuuXhC4Xv9yHoYtQlokLfvJDTmJPc/ae7ievvkYVnny1XpSuMVlJkK9MvZjnJtzGZ3jix3KY3EJ8bFcIo4/gFEe4NYMaCMZZ8AhizNnzWSVKgW6pyPy8AdF83kDXWsD3RSdxYLBN8Sn93SCxwa2Hl90f3r7BOr7XefVtqYj+Qf0B87Unx0Zrpu9675rLr3ezQd3yPfxZqNiWPOEHFVyMISQq5yU9mwnSBiFnpaT0TqFg0+1XN1zdWd6J9/6E9C6t2CW+7BEcNYRuhHZpyVgcrloJJRUN6b0bWWpZ4NOsEEgJn6WjfSfrmHaL/oFtqBs2vJ1DW1Prk9x5iVMil8QtyMHzAfzAKEJ+4Jm9RC1aX93daTdsmKiIcDYsLD2sZRgxGyGWlk+R+IGnLqx5mtZ2tpB9v0J6Xdto1XtyyFZ4gYp2ndC4/kt1pvODrcyPt0mTvtaKfhWkAoWBqoPEA37+5qgfEVwaFn/4u/NzL3GnuTUFE9MhfOkWH6ZpXn2qTN7xK5VAabnNhDBjBLeProcHci3qx7wrZXeB2nFqvWqtn1A77GcCI/LOUiWWybP5sEK3JPvPERpPxG42NbPpuSnLoRpNuJeleYI/1Uuxv/9CobbHTe48YFfb3FzO8e6HQOTNUrnPXzSbQQhZ4tNdTHIchqv2a5xC/tRvBw5rcMT9+CIsu2fCnHX0Acm397pFjQgwdLOvmH8eZd0+Rk9BBSmx27gP1iWPj1P2XwxeyG9KdOwssDfMdq950vMLPPr5PTsCtDZWosDUaBTlGc+VH+BRJ9RP0+t+j08t3L35REk5G8+a6sxrYqq5QvNUV+rUNJd4vWPKLGxiMezv6PTY5yL6MjL7sraP6BGDNzwfoyxpdRSBa/wfwthcDs/TDApZd8CpqaUpqpqEesM2jBICPNP5GcMFZiXvvqFjX7b0biAqImLRYi9Ts8rkAAnkd571lDFEL2IkbIfy02U+P/vQW19Xz2aOCn/zitgECqe4Wda8aM9BLF7sBiu9eC11d4sDObRqmHpXxj5L4/V0Yne1A309kBiKHPAquU3NWNVFLhLSkKaG9p07xjNv2Gb5w3bU9GnrLAucnV5kPxOGxH+b++Pmt7Yz2RBzV3+4Oua++o2zvOr09nU7Oqb5fMZvWB2lp6ibdes3fRIUaadVGYSIWNOQ/Q79sYqVofa2dbUqghyJPQn62k+nOM5b9/yzsAtJbrs67lbJSpN2+B91gjszV8AXT/XuEHosZi1ljBtOHfMrDv3jp4yp4efxinHnoy8p8MWXH0h1u2Cs3xIfZljfBnaeUtTWkd/iMcKeRDF/w8emDlcE92U7bU+KRFNNuybFUZl7sVfUPJfgeSUsyKvubS0333Sf19CoRuIuafDiwlZP+V8Y/cMMjHuWw3incDK3tXt0hAxfOWw9sAmxJrnDvxfnt5WFN+dGuwpyjoxrPlmj0M57TQAkv4VxBC7u/UE0H+be1PRa93jEd8iuxDQmVSPt4GJ489aSyrew2KNYcKyWf9uu1JvqM8beCbMbq7YiTIEzU2YCMyAKf6Mb879Whg+75Rz3ugV2W3im6np0m804lmOJsgpZkldZ2GvvYuhHHygpvDGVbSnXw0PgGbumoy2BFsUxO0g+g4tSxsrSEyPhlBP9i03/gIMrgCuvrtHOLVrjDYnoWr+uL+tlca4V7NvnqrTYHY5w5g+zhAi/nfHDoqRbzSonkUrcUFzD0qVBSy8f0lsyQRf9aV3li6BBCDO0YEyMppOsuXMNg9z6XXMvzcZC8phuVqkRE4ska25Nj+IpDxP6GMWL0lG8R4/jQt2J4skm+J+RyLSSEgVcx/6/4e2iCbu1F0W0kP4e6UHpBsHYttNLW65b8Eg/9epK91BVjhTwMkeCFlHWB7qXARMPltEw1uMvgR1JLj7NQBwYSk+PIPFrM1IRFNx23t6+ZXZiwksqlRUfLUUp3M8nIgLqbAPshyg1/VmXZc15gAwQujobmQ5ovIz1l4nLhZlHU8uCOk5HdB8ncHXSSp6d+ZyOfB+xptpQGyfkewqL1/pl9mXhkZR/cDUIgUBO5T/fkBRjmBSgEUipc88oiWa3+qGxDUHE6owXlrdE42sUBFTFAsytKS9IpRs2HR/adJ3k5D78kGZqmosePBd2zH16kWOTYoKFemuH+Daz03PEBWBmSly7b5O8LpjVLVVtn49m8T8Q5xgbmgrtgHdUplhq7h4Ct2ctmiQPC+OTPorZmFR28/YFUycEXxh06ox6wT7ZawrpVGsEkwtfAa9f9pHR0JjdrUuuROt0HcIPcA4/AgPs80zERzcjxIh4nndLYR6V+3Es7jHL0mV9JJ0b/Sb3MlsgdMuFHE32O8x9KQWOQh6UXgEMv3oRMWU/efnB7zmbl1wmJZAp2KmpcXH3XLLx5ZSet2o6+b7bb7fgzp86PVOOb2k5MW3dFfk8Qene6cSqqehFLTUlwZbKRJNx+embC+TlV6Qt7fPtbWkD3QIBY2e8twowd8BSszFYkXpbWSB67zX501iOOYIg12C8mVWhbg7HWpXAA9NkPQPqOoqP+uCcbT4d47guXdlNFXjwacPxwVGZb/7t7Oe4ynz5L+lV02Nuy5wfo/ize/5Jpdz+vHb/a7j9B0i50qV8LezzjBfkGtL6CGJ1HV4nWvxu/TmiastoRdPN2ie3UUM1A/9j7qbMp2wi6LkvmHNzvTPljTO1igTbxj7P5V08Y8MiO9Ow5qfawbBCJac+N2urRsHpk0ygEztTnTiJ4qqpjhpdElau7mpb8lB9yT2C8V0FywqRAATlwXxSiRODv1Ggkyi58R+ItYDB2e88wNoQuoWWxS6biBCTdzrYsaauKgui/S3czotDJ73HaeFlyaJtIaUb7wiY82vvcboevh18NouWOz7fNzXeUvEf6eIzi5FycvvTiFtskJ/nbPqsxyfK81zAuXpZSWumHdZ8KP5dJ5WoyMjVuWHTd0Opcv6M2eD1sKkcZ1docZ+Q2nV+hG1KGsmwRoht1dfUj4htxGd2Ovt2yEk3cMTHZ9D0BZPjKzQlNI8EM/LK4xuYqBXZVe5H8S6zSuEgSsHmmILsC97lqp5ICuVPs/u91h+YXwoxyNzajgstrntU6H8F1Bw3Dj3AvVkgmjaxr0tgoZXjN4vP8pnBKNdZJPes7Tv2Ig34PR9RzfS85sWBIRvbgbi9orICoc8P2hfAn0S3/ffPN7Kk2TBMNZchRWahgMl9svvR+6FIzPewPwUFUZ6aVc8YX7hXz8j+wbPD7xLCR9qTFrYj8HdK+zqNJSPAbMMldzVGH7iwk/DXc8VMOPsuU+ZhUEz7B3Q1FsmwR+V9LxNeDCrSvfhX6vzfUTwuQebo+KC1txYa97WWDEvIHdILGKQ+0TbZ/OSoarz0foSWm2M57o+HFodllgUJrflMM/uDEeJB/bpMFwnCaC+tb2R4wGVtvIYkoOFpyg132oAgkxWXUvdotiV0Q6cejr7PniSTqY3hSLnRE0Yg96Z57k8YWoomAeE/QPxO/V3AlN32g09oXw7twW6aCGWLVurmEnDO6YAkCC2le7QmC66jTVskjD8ZChvRyepC3U6dioItJEJZx1A00tOsFiNNkWJDQj4+uZ/712RvRMGkq1EHsEWmwVEPqSjAfMz5sJJ761a4SZylS98wxs19PZi9145iaW53ahKNPYCuqek8MYmRgsRLvPfZix3MZbfXW1W+AiwyJES9+GT7pHd+NGxc2I+n9NNeAXZvav1FbCOY/UEJ2INDIvRCrskdfZORzHB4c/Vel9Kcm4jWFVD+rSuJydZmZDV62IhDo8NDgt8b171zeAVwR9mets/cY4wE6Jo3lS38L6STl+smj3JLnzIWCeLrCLmg95PaC6X/MOqlwA/huztPY197OZZpjq3f+LkSoKT9ReVRVQmBvoSuVpcfQm5nrHHDsli3YEsQOdwmn6/5+J1/bepHRv4y+TONKtu68OV9iufMn2+AviHHT9JH/ngqyZBPsN8VfG70YinBJ+ZCS6btZOXLKz12ichJyJKw+YzWzWru7e0X8yhwYgbvhePHutSujPuh4Bn67dxsPOYKyFeULL9lPqOeRJNYWabIBssvrxL6mCimB7L7+F9F7n9GV8Kko4R9qcc6DjlZZSkM7ZQPWmvXlF5DuKk6VBK3Gj1gU57erVTWFeoIJIWjSaXnwgaivuq7OC3W22Qat7lFLqUB02Av6eKAsMM5lCzxNypThLLax1Tdd+F1DbHdyfuVIzacWDy4cqd6H+WecfvhAIEPLaVw1id7JZXckwEQmlemX+x7aGy3GDCMxXMEDKKve0+dkStA7S6mvleIhH69gdbLAjUUneXAC2ReKHJBCdGIosBecBQQYXze0YGDzrFafP8+Gv3CMSCmMmwZ9tIARxq0C3Z94cOqmTtgeLz2dyxwq7FDc89bRtdvsrsrfjUIk0x3ryfqXRX8ch87pCrszOdol62QFCWrnw3m+8HGiSJCq8BBvZ7pXLGUsS/+yHGdpIWpzRNs4/iEyK6frlXBNLrkxyJa/5heE8Lvqq0M99z0PWqTWTEXApTAEBhkYzja3dyr0sCW1ZY7x61lOLphoUb48PnRj9t2d6LWKUTU/e7bJi4X3sDC1i82rFVTJilZuRFNMiyLV0CZcW33URaDQ52dbFTXEKN4y5KL6++sJEBSiClLbZITBZKdwkLoCcdju5tsDCYHN+21zKrU+nT/vH5JPAK4n5+UJMdSRNyhIDnk4P21rkmGuwKejdUSez/H99IwxFddS6Dy0H9VlP4NCSmxDkDfqKFipaj8GUdIiqX8Ngdv98NzMh/BAJd+h6apPwVjSlG1R2PKmnVx1AWfa/jrU2RpaSm0OE6cIqUPQEUDIeqzYpjM/rIHAKuOXC/TYqJcHyybJAGEz7ng6WfJGKKZtppMYspAJwG2U3v5V8DhwaewOOEOHNMVYGq+ZwdAF7PPeSVjLaWrrQCfNsjSoRjgjhbV6QhV6Yojhe+JbkuORFYM72azIKS0SWhCBXVyT4Ye/2Kn+RZhIYddjFPhHndWvR3ppU/okMHiY8Uyq4Y5vb086jedkxoz8XyYcBxTk+xXeJH6+Nv3N5ZtTkNOrh8oSB7NB2Ub0fk/+/bES+L1RbvOn9a37jbBhY9VzabW8kHv75Dm3Y+mzOKLDlR0LmE7uUu/qhRMGbYuI5mTPala4Bus/sXj8cBkOye4aovxu84U15dXCgspQw8VY6INd3ypTfWkF2g/z5GOF81rqs5Rr7un50oeMlly64oV/VbWoofwle3f0iRblc6K3C8zM6FIWcftWGGEe92+M+3CG2v6f7l+RPN/yR/MPTG4+PYtEfMNP767WfosVaH5DGvFmu+ombGqv5QmPST+vJdG/tq/Ldealwf418h1D2Bi/Uo+pKn/pQVC/IbVHJCyjkOsEhxaK0BT9THqnvaWvj+/5YKIolSw260RzexsTjgL3oU+x2/XqbXaKYPameVV5eUu/AdsHVhrV3JU+KsM2RSeRN0tMDVn8gimVn7lkzuJIhdtY5tXQkB7eXD3UYzRQwGH+VA4gySmGqDqFwsUju1LLcIPi6U1ZxNtu6ujLwpX0MXCQyia77AF9KxmNbJdupq6HdQGGDUoLEfoehQUWPwexflWuhc8yoip//3MrL0zJC56MUh+bjGmNXG2lr8+3kephVmuPEBveKuG9LXoT44IRTuuZ7J+qzCmcOmJlaQyx89Gv+6ssKlhWbNg7D8K5Prz3YIEBwU1Px0fre69TfYhDRFkBQWtL785AfUFxKevVp91HpxVD3nRmyx7EOcPI/GUH8zoW6iQfYEl5svGz9+4+eE0LsAI2XI+g4LIop4apap8hoFlW7r5Jwyb6/HrqUKqTvHsfqp8RPb0ESR3dyxtGjrOA3xShsIzn07wWtVRPMLLWPgfFUJSBE6csW5AO7Jfsym4TNDj93MOoWbAHbOIOKM+2dUxo+Mb1Z9YG4jh8cj1jnL4bEPkeT9qW4l99WPU538lFUTzHd+Wx3zTfU9HINVBKyrEWU8PYfVE9hNFE4ZpVX2p+/IaR6SRnVEpYJIxd7OnNQEHeKjC9YYv5ROvgHHIFXDAXcJ2ISpLKv0ty0FHRUr3Er6AItcM2JW9sA/OagJY8WJWdRtKwlGibQD3YhsXlD07fwedZBW7IQvWCDZVwF4g1VWmqcc3ZEklM9K1ofSdh3k7ieoDyJNTPRCJ8Ei63jovGXZJd7HuWYW/LBMlpklyTPzAN9Qg2rpdgaf9/NbvMOY//kuLI4adp38Q/NLzcskj511zoVTs4FDhYdaKZ6a6Ru9kq18+vciQDC9NGWaKXAvbv3eIxSmEjRWtjSM5fw0dkqnPcrxQyWuXHvr+VVmePE4Ovj9eZmd255FbpcemPkk//ADuuS6TaTRyUF+jYmDNaaOwIjuX8DzulhyWvXG/H8Hf83r4mLNymOOSJxVtUkeIFq3+E1h/fjaYgPPYDTn2Z9Vps7VPT0oVRYTvlUpGE3LSRXBpEDDLLv5gryxjEyHTeW2BXZzNLi0Ak5mk0vOyGw6+w74uspC0gpzzFJYawznlt8jd0dJN36uNSp6cFS4ljHxVpDUM/Vce5W2XWXB087sCdO6y/uHlG7WxryNZ1B8LgZ0herznbKEsGq7XGpffqCGbaGlujyon/7yN6YIXdhpoB9Iy1dhfm8VUV0dOXNICtnByC7sd1fbAmwC4QM1cO7iMy/c4m7DuMM/l/bmomiQ5FaBNCLZ4z11urynpv5guKbyxlqWmkLHnvqMBWIVtzCJ45eYScWOJIRf2vpOi6JlVwCISvqvPjU3bu0FCD2WWsoXhFicrwlBScbDSk84zJe9tIsqSrAILsMbibja5OwWvN3GYKPP3NJlU8+HaKpg3Y9IVAH6m1VIVHKOPWXkgodXYlGah8tGE08bwQb2Hb9/dxNlZuBEx99vD7rTen08hOl+6ae0qGArZFm+G9/+mh8G9yvmMececWxvr3w99sfUqtm/RD+cwodCT9ZlSy3g/bXkAhiCo5p8M1fA+nDQzS4q6KT9AJUnkFGHRV79IxIrd1fkbbCi5kiD4qG3l8cpvmzfLPoKUsqsipZSwdv9dXQd/16nHRo88/CRqp1v4ltAZRdqybGHowBIpk0akmFYab+uqgImJmR3IoDIkVsu18GMVXKbkUz5zq0DojW4l6mmzWmnDQ+ymEunHr7zNhXnWky54xWtPvw7/X3bWDMi8bvhy+1rHp1sbeKM57JkN3gLJ2ipEJUDAlnQE6uGgPslHltm+iLFtvV/wREbWs5M6VjQfR9MIV3S1v9ljZceGQeTB3vFlfTb5JAfJA6NWJM1ef2FJhXTK53sX2mOD7Yr6VREqOa4wHZsEJZ+9Kbel3U5CuKVniV9/EMIOAMPRgcJKsI5sprNBzA+LdhQBCItdSDrKPlgU815AUc6sSR6zhjPX57n2oWjPtJ9wCc9maGs5DRBcwo/ztqJ1bWez8HLstogrgGIAtDYMnRuyWkHE1oCzrFQxQQVD78nB0J0TXfRrBjs4EndymM+853eYTbwz/uPk3FF6g2A+LWIa9TV2rXOxXJbZI/DmM/AyuLJYj/AokoPlmwha9lrImB1mK6ljE83Mmz1LBzSt5UUTa97iuZf7kMOIkrcfmtMbzUV+On+qAXuo9XfojYehoNyfHBtrbRJuzYe1P+2S3D9/fHjQ5/7XIPx3H5SY0lgIf3j+xO9g18uus9DrUUlk+OOG6At+jVjl4aExsMj95aW4K4CRZhwDtANHhGUSeqP3h+GFi28rBJdXpFQabM0PucMV2/2kM3cNXA4btl3Rqdmk2+XUle7+Sn+dgXYfCfm/8IfwMEyyz5OhsoP6DEX+GS1+l/qvH/AJhquqiAhJEHYlKTmrGrNZuNV9863YEwbD785Gelm9P3jYbxAmR4HQOrLtypoNl3llH4AcRusP7W5+fZSSwXz8tRnTH9OiPyZWBkXxlNzSUaQF/kcYeh2INKAdPYh7gj0feXcU7Nxb8iIMm5ibQ8kNfkTxTXWl3nqr76bagdAPC6WqZ2cN17xW691fVQW4z15Rr3CvbEMH7gQBt6l0s5EjyRD6e3KDhia3JL98iY/DLlGPMABBiPpeppStKLAGS2ZDPssBkHFJ+23ICiPJIHncC/DgpyZDxsvYjg63lAJlJAEQPoq0v4a5aRVGgGJM/Jv+zGl/LOmwPygJZXkpBoSdZ+h0skRuaMJBm/bQfqdrqZexOFuRz8bK0wfCua6pj1C2Hmypb2xokFjFUYr4e+dD7lVttD10upSP8+lThmuDBpBTB6W/6L1Vtg2siD6/vGQ54WykPiFvEt1826cki+1nwiSHlTjcmTRMFThGinDfIO0zNYIXF8E4Ek+ts0wZBqPWhI+2vjQLClo/fqPE6QeZ14tpTZHhoe+XUWsPeFdB/b330dzU6uOgvYN7tzWhJ1YzP8vpQ5y8cU66F6HHz1wlzAhmNeQZbkJB+3MRN/mZ8PVTsRuZM0vlgzXPdfbozHl00JEFCmsT42ncDGYOfe9gp9S/Js3WUoR//cpGj4lvjEuXaskHOsir6L5R4G1f8DuSbond0KTQf90P6RbGQ+b2r4CxfFaeSU39ixX4GUvw6e+avqVrRazKaW33axM96+uxiEBi/HV0zXjVfUffJ6JVYZ2ngxZN4na5ydvGH6P4Wv9jRx+gi2HzPWw1tD//8P5P6Ze4ovv7dS7Bbz08wIyUWj2iVQYPnQ33RuetqjNEPtPzYENLEc3Adbm4Ajh/4L+17LLOa3faSy265HvdlflZiTzJ+dg1v102pkptlanZmWs4TY0jIpDl8L9NIgcmFHetyyfgecefLLN356vrcYJA0BveBMXSNKrkYOuiqZ4vL2XeJwXzDczNDaGREwMimY3rKlST3DXvE5vRd94R7r7sVXju6u4otguVs9NcRSVVyiOTCe1+HhNyE8UJAYTqbJdcIafaBIMbKlRBP0PdYFBawJvIMsqiOhLurqyADqoGmqQGLxW5904HM6wxWRZJQG7TvezdLKSyxksUxYFMPrd0ffZhtn/sbjbxwXWQXgGEKrCdDVk85gDIdJPD0+YW5XWy10NXg3+i69sVAcKCvdwcOPWsTPLD4BZm/yF/74Ns8mPlJbIM5Lh0xhWgNdTASkNc93WghqCYo/a7vkCrpdI5TQpRYoYnnoNhDe98fBNNyqgM5f6x0T/OMtr/N5SwcNW0mg8i8rOXhiqpKnufhIo7QfgvQ1qvUnd9g1/iyyqP1juMRplXwAVSSVVKiz82+ccpfiK2Y/Sp5PGZunpV41RdfwgHPvZ9IYdtReHaxNjdaHHHTGlGM36zlBr70W7NPP5kiDn42r2a+rboJse+/EgvhzMxT80v4dLeXhDeFgIfqqZx5saslihFiJRQf31IPTJ6d2T8g93lvRGxkr+KvdPjQj0G1jRdz4r4VGy5iWgwYPjLJrVJdqYziE0kBx56/sTZDMxHR2tC605eaqaUHg0giGnX+Svpr6uaxr+3kvzSOL2qEYPe/C71z1ueYIpIaAvvshY4lBiwu85SoHcehi066lkiPM7lmVYZdEAaejSmztprQYSUY0VIGO11ImOK9k3wtaAH8awboDjcAtt0h/DJCwGOaRwBJbrs8TOPTr4RcDABCpRBFqDpJv0BkhA8+qCpX8yLtSvaewVFpaaRsbiXv6GGKATxgguWr4CNAkvdFyiK4NM1f9YyTnD0YTZhDmFWGX27loMUZbU26Nwkr59+YzI11oIXhp9qAu7NLSZQ+Wv79gWbUpmfaStLf9MGpI6PcmVaYYvZuTAArSSlHfACRcP8BYHNx7EPpftb29Jmhw0ctwEP9dqVREgLlyzjq9yoXMukwrZi1XLhn0zoaf9ExlG98qfMTWzeiLIni3vC1THTQY4Npp80w2R2bsRWjOVECFHfgy1GIMP3pTAZ+/0bj6NtGqhzTu7RJ4KJ6p7vLR1wzF0BVeooVQMKIb9mQugpcvjU6INF2br9wGrBjcdtf0pEVvfWnMq5h7bzqn1cJMJhN6fnSigDhs8Vcq4AZzkKVe5kJOVW9MTkGaqDm7ix2AMhNSxA73xuVfqL6a2gZcSuENChzR4U6Y63P1d0FpytJ2GF9LlpuTQFUAYlqeUV6eNRSuRuS/Gd9kE3Em5MfBp9GXJea2SAYs38SoDLIAC1w+Y8e31SdD4/5EC5IKieFXYeF6uHoVpJnuOgfcEWP4ZqcrQEOXWF/DGq+A2zn9Ub/ZhAiosMXuUUziiej41v/lP2tjbVRf1W5cpkDyDTdLFKlnjtAsTZslGSzEcH31FilPLUJjEezgtlFRxat/NOMLC2EkkIYJ59NGvZ8iffzzV76vugy11AVHbeDLa06XSz6XJXuj3NhTJL5JdfgDPrO48ograQy1J0S1hdtBVaSLSoj4cgwcEw1uPB+Y6gh+ZEvh6jtGTyzdCWaWuDQDnTSd8aaPJEK7xh0AyUw2FTmXE7y9cL+hvoNoyOxwk4MxVWMFLQPY9THioWzKTlvz+pLv5901LpRB+LJY9JfpZNgHoYrKCKnljbMZm0yWj0ipqs/izm/mgihSfaIf4KILdyXxsIAIRNX6BuUfp7wYeWbgmrIHgDBggIRFefMFe2MVf+jvbsBcBDqTl5B+AyQd9sImbRLJwYVdBNVlPYkjbBhT1YywUnFuQZFkdpB2w/4baQjDL3CM4nPMgmiPaQtNrPe2Yx0uTPIixLNp44MABjIlTWa1fJ66OtVQKWBoh8RPyEUoBELBCMqfkA/23usn7DKuZdn5aG1XhWP53Al+ovYIvMdmRsN/o1Pitf7yFeg0L52H13LyPUn2bvjAm5g1MwGSvqZHzwSztW9A5PV6Fxhy1TZ7UX4i/LjOgEufuJ0sgZ9hzrvjUQEKy2P3t7o87HtKw3s2xkwMxMZRCSG1cirGvwjogdti7iC7jdfPonqMH7NH7o0/u+L0p7JSpTmfRupCceavHrAeRdvmTtqTVO7xfm1gOkGBu/4uwr7Iz4ZP1sEvrkKaX/QuY8/AiLFmprkSGtYbCtrFdem/yMrR1akSspgrY1CVKfG5oZIS5wJJZj34y8W+h2yau+HBxkXQS6MdngIGinmHlryPmO873bKjduQ161Usr0i5cZPLD6RfpCqEfEQygo2eErj0LCI5Ei/kq7j1HTqP/aVWmrGX348L4eSbJnVAs/Z7cywwUpRV9BLfkSdS9g8bUWvQJGP49rISKQOw2FEXkRefA15Q+Xrvxcl3VJVlfqUVpbhBBjIUt3QJ9JyJiAbl2Zo4zaJe5fDz4dShXo/H2V1Rf+ZYbDQ8tdvKV1RaU7LodMt4kWUCLbwFSDPJEd56ssYRDWfJ7FfO4mgGcJH9ZGTxvIS0LiPhUFIAoR0I0sU4uD93OBdkB/E2vP2VDGImI1mwj3bE3ZoskOnLN2mL8TvS9LSqLFnS5CuoCSCtL32mgDWBXkjrfk+l37rgNXlmw2XePS4qBpt1/zJrempFUTwK2wpdnPbC9Js6YmucgaA3BBr9NcX/17NZwjSWRYfN88Luj90U5//hN3NwO1CjYrpG0BfM+3WE+dw8aQU0Q0y0MSpYoAgKXLTDvX5Kfh5ZvK/CJdA4+nFwWx1jyrgQB0bW3VXnqOjNpQlmCOAgWGLF6HJx9sqW7Y0ra+MQKiyricOULgq9eJ7RPGrZlULJQxK3Dmj0y+zgjaHppUfX9ARADoTBUdVjz6WASzwGmYs5W+3PhOIzGZlDoZ+NM1bWRambtHNCYPRSJpGRfY798wfwXcFIxhf/qtU3y/UJdm+zHVb3ISyTmvgyJ0ZbE6xFGGcjruImhKkgA8w1ZMEzZLv7b26+PD25qo7zkFptYoXVKKzexo1m9ulLJHG0ONNha5BZv4BxR0DK/O1yU/0EzdKFF/py0n2j4oGTIgNOlLp9XseJRFab+i8DY7titduH1M14jI+6zG2NdtRihQ3WhkJyNDLMg9ih0Di4JTkm485Yr/ZGpv+JJRBf7aW0TEVkaYENGfzyccFvtgW3+6AqmWEsWf1/M/HOIA6JIdv99UWv+1RPz0+yDBIkQPtTG+0rL8dmuFp8y0a+Q3o6rzQ4zAF7Xas1GRZhsbDSq5H93cv5CTKLFTq2Faz0OxzFU8/MIOWCUmipO09smDg84vZBgs3KMACxytbZTc1GEb08GGLADr38tGn2uLUJkPBSHsUU2KTHO6NOiMxbKHOukACeVNptN92ePcz3mgHbn8pSGv68DKvJefx7SbDmjg4dEDwfnMUpe0415aaWgS4UQNsBtklLf8cxsMMlcJwVWs9deIqCcsFU7nIv5yo4NxUYVDcRsUjimEaaJ7KOGs93v+seVSXkUZi08sFFS7X6S+EecaPJD68CYoIITUOG33OC2UwOS7RSnZYTHrH3QPiOFTTeFvqa194EO3HJYIqIf0s+8uciWaxvZ9HzhAqdW0DTbWJ8VJcLBz3Fb2kF2ELFaW/fTOEElo9cBl+O85pny/r8Y3o16gCpM6EH3+ZyXG7ixVozZdAfWyXkfUn6bh1BMc21XdLEzwrgtfYO4N3ZQKqlE70xs+CMzVrqcWQ90yE5DlEAyU7ZPSrzVKSR348M5kaIUL+vt1ZkF0GCZyirl5x7wqxpbFz6I93nOnq06AuprpfO50fzPwR2f+1Gsml/6XeNZIzR9j74v1E7ANrgpfWbOYFU1rawVVE1f01pHnf7dMhsM+fBFPVDVP6SK8rNlPHHCZ898dLrPXBghpjUo0yck7lpLKt2mr33+s5jDl+RhHTKtr+ztiCGSX10sLSvPjyGl1ZP8JoVDJ8YWt9Smv6WOYlQK86yINHgvSQ2bM3lKxx4RTWH3SUjg1OGtOy10LJeUOuQLGD8ufnz/NkfN4EDN8p/1VMw0ddG5uDxftAWI57GV17DsxGPRw0zHvwzkhMUnBGaeGiKY1lefCjb002XadLiXYDu5EHDy2vVwh4EZjO77rPZo9Meyvt0xkmTNDZUqmqrujLp4N8DsdsgUu7FsGBif2TUld7N1jrwCDh0EHr1EidgDuCigOhS2Ejfhrg3qFbhH2n7QB7pi0LfUdTP2Osk4bG4X1mc4IPud0EDO3q8zYtArgZDp0Kaz4AoayHOwtYRygbTuQ75YqWtKKjnCGh9NKd5OSinWoWKxLu9KNjsR4e849IyMA2bnklfPLoWUAY5av2/VB/Qwj069VZpCg8WhtiU+u2fXrLITZH3P5tzDd0IVdHjJXu2C0sYfWcqk/PSze13K1JXz6u6/yRI0ogTW1iBDVAOOIpiwIMd9rdezWMrTLyV+uFBJRI7IWU4YISBs6uXljVJgRl0lRISqyBI9gNosb/ab4rXPnvCfuS6rMow2rNvG0BMjqBLq0SJfcjajVASK3BOeb57bQjlWtihO6XtNMG86tO8tDRZqqe6IME6pei4xj8SQz0pP8ds9cpbIecPf4Xa6el5gDzETvElR0Wwr7wYnGFnQxU0+ytOtl60wzp8dtvDf58jZvjCSiGvrry0ZBlJBzXEHFit8VcL+q5GHQzLtPTVPH8ALD/famomA7NrO3ghygTu4bmSURQRMGWCCAfOKPxKSeWZbvy/Ctd6p98pU2U53QjnuNAeNmhXamLp+adyx78OHJZlbIKe7EDtb8Z0MH7wJ4NO7UXuoKT5slqOJ0exP8WCvUDpajY0xZuvj1IqAm8nXVrvK+zjPTJPJnsRb1rLHMgfwvoK321UHVE8+N9Rzw65oOpl0xnESemq96pHQUHzi9vM6GQv9oyttVrvc8pnJffK/nQI7DrWQy7aNK3GlUCXlkJIi8NpFTdJnG+0ptir+SdNdVIScedDasXpWxFpmBJawtx8dUXuVm6lLdHJLvROizpNi9KIpJPEhEwIsHZcry5h9flTbJQo/xdJEFXwreHU4p3rMwLtumFRz8WT7k9kNCV3KcWUKcXvBTotpauulBv8/H9Vu4FYFZ2zg2hVAcPQQnPfu2giu6nE7lhjTMAKScs5iC+Dpe0Qt/NNAt3jooGx94FP8zZFXL3fxr7/zZhzrHBzcPpb6oqxxVOr2DTfrcVq6Es/pvNy/kqz1QdUG+cFvPNbSZBSvCWZhC+Uvfsij7JifxO/XJ/Iax1WoVbpkeG91Jf0XyVGl9clJEyGJFMUbTrcn8LORvrGkP/4L6SOKWkbepWS2g/nifE6fU/UjZQgmssC6q7jjfK8hruHBourfvMogYTrWKo1105x6qL66XRDvvTKwV0PPw5LS0NuONxUYavmeVWz2Jo3ST84MhZCIRyiTVYsG3GDsm+ScMx05Fa31vBJe4kIi4GdMMhERbpWeotMbz87yA3sCBYysszr3oPhTaK+jYNJh87yxU+lHf8G5J+qvxIX/WAAYmnics/FeRTwuZjT7lhp6EzM1F36KSl2veWjM0tdZIcQqIN09JKxXvWcEZhgsccgLZcAHsFUBrjfFjFhI2JSN3BnPRsb027pTN/7r4afMA2gt7AWNOv13QUy3xrbXzJGQRocg47qJOYVvuSHESYbmnIY9BhcMxGfHxHavCfbwKT0VDh7CDKV2Xc9uH9JyNR2trT15kNw8lSEhUeLNmKuKV66RG0MJhGfgCvEm5NQWZ9ue5OaE+DxEq6FQYllBmbizB8MX6IOChIJLCLCKFhsGRh8xFC2x1nHqJD9/VT0QYURRA2ZZY3fytZsejKgodxiadX48PLTWTu9xTUoXOyx5eAQyfIvZ0IjD3I+NevAMjlCQSvucWFOQ/bzdqnVzoqHrQF54fXzmV3zZwL4wX4OcLVVKmP3fItbgpMUiunTBcVGm/ECOjl3gntfI2ZQvjMoeAH0CIdmNE/z0SdzNXmlNnpE/aYxCup14lPfG3yjgo9jG841NJWv5goSHy3ps0nyX0CeKPSp+jOBwuYCwdX2zxK6zv54qdfHy0k2vqMPPf0t98tw3R4Xy6ZutOJ4mNqA9W9M3mLuzjIViE8Phu3qQEPcmKy+vKPoQvk6FcMLUxE0Tg0Li+W+m3BiZy+SwrItAe3/oozunu4NO1YWHGlJXbHVJMqix6dUjzUXZd0wKkcRd/foyGa3/KNH6FBdMkQ47djabpnd8b6+V6UW9iq0iU8qS04J4kysQYH03lMFXTUNcU2V/ZELUNn0+/S0l7DHalPx3JfB+Wyk3EMvM12DRKJJkh6okTrE0/LKafWUPURuFD5GaUaieW/YWHH87/gHGscQgOWu5wL3oH2Zpy1WFHRTIGOYX6npKPR7S3k337K7D1sZE9Bc1JQdYetIMIvvBSNr4CNEaqnaFCDzj7p7gYPz9qpxTJTbixWLRlEe70olU8v9RDryUA0uQjVlp2+2f7WIfQLNGNOwEZANnlsYX/cZHR4ASZsTek3+X88DIpextet0P1fGcTVpJyFD0H/0W/DrQHl/kNvi5WW91qDGWvq/N7+yAZeoa1qhjHjBYxOTLMKzfxFeqEQwqMctQSQmF4iXsBOqqKDrLVujqyN/79uLreP30LAf1zEyPwQbmt7kANyZjhZdeBKU/tLVGOgGnUcr0FsDHOXaC2fqb7oiC1eNpntU/y4c01YU0G/YCTYaBpCWNljTz2ZcYt8et5UyJDNb0pG1Z9WS/8hxO6uDsNQJWxrl1FiKrWtow7W+0qMtrQ843QGskPdUhfNQT5ugpMhp/F++wATrW7MxYfpXyjlz+PryTVVko+rF2rblGLrP+9AgUmbW0qDgpHn+yYG8UsJZh9JTXItNqbVHwNa4GxeRT6Tepbcf/t1aSh2ir2eMQ3GpjBFD82+Wxi9grAlS1XJxB3KzPluhEtQunZrPVz8YRuwrVCwZGwU+T4728lT9La822Rzuw4aKahuPKv4w6QiR78ziLRPsZxjIkkrnZMS+4rc/DMMV2tBHmhKkfPn5oZ6ynFB3qq1WNlKVL5dvk67z9pJaj0yRGbFeLp1GYNGj43md0MzFVg36r6QfjiScZzxgQFvDRqt80pQ40MlLQY/ccPX4cIylyXKvEVh5jeKFRoxTKXytxSkraUAw81FI0aLmHa9yLq0EvLxglMzmx/VP45u1Ex1PCM3kEiZdBsUk64VrVOqq/A8TxfrdAqAdRCiKKaWfvdUV//54y0gkHV81V41PwbKieqGaOlr4Ieojj3sDaTsQN111umPxe8o/QZy/DyQs2fsSx/O45w4qOR0bwGuphK4eJlKBSHDBuqMSsT3Om73fM5FJJX2vOFp8XSlVumVYREucL0UFmXeWSuEE6zNuLhGDf86s7uTJtgrkcsk0AZQ2v9vpDCzZ5f0D45CNHpuFZgoGuByZMAb2OFO2aQ5X4DbUpV7gL8UHV7X6bDW12Rn8OZPHXavWM7gunqzqxaPupfz7OqBYWJ+EP71G0TyHRCxuHR5AOVVXXDAs6eZ4rP7V1vqXQzLVEuYfLww3vFjeLhrbyIo4+VV4Ddb1YRc0EiNekly1qtG+O7ZVybefNg5Na6Vt3hSn1xJ+fmgmfz030hDmXWNPZibJR6xzlfyHSdrLBOs4CHbJVZL3Mr1bHN27AcZujzvUvC3/WujDM9p13G3zxumPmOxlGHv/Cz7XbTpJxGqTTj0/v/VO+t/eb6EkMfZd4QHoohT2bn+PFp1AXs6r+FfubPMoYXqEwp2dz0t+vaU7XUpAp2LVhTmSFBsllFQKaFB86CE9UKusE+u9QYZNjwj79BtMMNZDMdHMi1qSLsxhWwXiH8CBPpVdGQ5j4/wxIQmfErPL7+oUsbOT7sZ5wkyg+McRAfPgxgM8WZpazasjzZI2s8PIkYgh12Ys+PhPQ4Mpail/D0i9/B5sGJehwid4h4YcySh+eRDpM0heedSVYNKPGnuoMaqae0FdEkgZJyMjr9HfJxIKalDP9hMSUGfJSruO870jLnhCE6S/0YfECK1rwllrKJvyRqUH/brUfrTyJ2bSrfFCCBapPBoIvXgv9p9TyjVMkjK66dBlrDIuqbnTJx58W9SgUD+Nmah9CdtX49UyVeu7fOTTh8Df2nY1yBLIIHPHB0zvdaOsplm1J0vCiXwxugnFkFjQRqiU2f/17co7U+o3S/bgCHAnRts9cwSdZLl0nA/FDUS7OEehm9NlrShP/+x43cxyigiLNUV+gFpSyOaHFvzcT0U4hzsfLyjDJeicyG8Q2f75IVOtur1/UwTzzrvlaai9TaS/cjadrKIZexPci2hTaplvgx6f5qMXCu6X9YJvoW8LQKFQFgTBcI3H7ZN1twraS+K5GHWwcllft5CcOIjc5MlZpHNF2CCCmlBC+cYgu8u4rAVZRxwQfoyQgLgYOdPpkUR41f7bL93MN1c3w0NvvRj4wyiuh3cJ9xQw024eliBjo6kZm3fqLyg+bPsWxeO78/Eyf3vaZIRzSkqrOKNfq+ghsvQVBE8dGhDVs40/WbuSV3zJ203bIPLxVG9Bgm9WW+ktMFrRedf4ay5O6VFJDHDZYRC5rQVp91B76c1noulECD1p9DgwB0btjAwpcHE76pRhI8BGuS1hNhFKD6esh9TdG9whcAQrWf7lHZvMlM+pPb+DN4zx3+wsQ3S7E+PQZKQGA+SuZaX1VRJjMn590xFBa4k7J6G9p83ff/7ec4LHsqrejr0rHi4Z3S4sf9IpoFxk10BcB3ZSFWDOWMZ7+anax+cOwamg7pYrlGgegErYrso/5gTT6tylf1VBEdfeBnG+bdVI/st+5brvvTffr8lmJ+MRPc7U4P2m1XUoERWcG91/mYGVu8TZk+6TQ6DpELbPsZQCHPNMOygpFPJX8p+SdiyHD0C/loInmVpdP4pzoxLprKDyjSC3p7nTVG3nYDnfuYyOHxxJ2tNd22l3OsQjdxkOaZ2NbLQH5ZQfCPomy0G6VMGm1uRLQP76hTyINceimPk0tB98vAYqfFDJSk9RUgJ2fu2SdphQj6lBm93Ucl3hhldmsq4G27km/n4uz5QkiGZzM8HPG9mpjttlYvWoW1Q9sIHH0ZGNz/d/S2BMwqFLoojZnFT2ZQ0YOBA0Rwv5owJhfd8vnTfqgqfhv/WXoECNlFC2NQGOTOZQCDyC8mggAQlvX6e1ovWIz2EG4PGNripp/zYV5DoY7p52x9HJ5gWaBEi9NXQNZuASDX7TUXQK5xC8rtvsid5QC4qJy4kRHy5aJl+g9yueFM6K9fH55cq8MgUbQ7JtsrH9sXCMXCtQmRs1Air+3rReribw4n+FOt2MtOJVBqFR3kgscxf9ftQBmPQOanIVPnV0AM7cKjcjlXDcLxXTFt9qtf/w1QSwcImQC6Isc4AACkOgAAUEsDBBQACAgIAJYBIUcAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJYBIUcAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztml9T4zYQwJ/vPoXGT+0DieXESWAIN9zNdMoMx3UKc9NXxd44KrLkWjJx8ulPlvwvkNBgODLQvmCtIsmr3+5KK5nTT3nM0B2kkgo+dXDPdRDwQISUR1MnU/OjifPp7ONpBCKCWUrQXKQxUVPHL1rW/bTUw8NBUYdySU+4uCIxyIQEcB0sICaXIiDKNF0olZz0+8vlslcN2hNp1I8i1ctl6CCtEJdTpyyc6OE2Oi0Hprnnurj/19dLO/wR5VIRHoCDtLIhzEnGlNRFYBADV0itEpg6iWCrSHAHMTIDNnX+qOSyx9QZu87Zxw+njHK4VisGSC1ocMtBao08pxzGtYXfaRhCAc3pF33kQiyRmP0NgR5HpRnUrzGCaaN//iKYSFGqu/kDB2nIPnbQzAxKWLIgutQrR2RkBSm6I6z4tazRA34VIdjaoa0lnMaGLpIKkkIhJBOA0JRqlRM9nLHqnDBp9Dntl3i2gioYbJCyFQ0q/GqoXAPKfcDJPTSnecaDYsCr7ySt58AzxlqcRr7TZc6e7++Y9dg/9LQTQblq+YaW0C/zFODX1ryx22nebVsbBj/R2njbtD+cBkKkoUT51LkiVw5alc+1fZomhsA1XZevHLRrTTA0+j0RYwgJcB0saoMl7sRyNDEwi8fMPt4vTEZlw/LSCA2+wRZftDru44zYvR+ER/i11p5uC+x+RI/wk/3zW3uzxF4nr8SeXdnM8z8Z5Rf8T4joRuKBB/+z7MRy0yOH73jPMU0sK1n8nTqBiBMG+QsClhAVUs3rupJrxF63rejAKdxegLustCJTrHjXBVf6MAQmG5RW5dbLbwGSG935G79JCZfFIcq2qWA9tq+10vDLzRTce36K9Z5sAf/wjfCgOjpoQNW/ABZBJhvCVqoRT94oYpLllFGSrh744tPJPu/843Xb2Xavyd7Bzz8pWT22QnY78B3cZd7qClk54U4HfH5ScBB7vGSg3ulZiyZEv5dizWjbAektMPpJPrsl1SKpAkkJf5yzgrxJnm6M0LoQOSzkHTvC7sloo0SNchdWat1J2OnMqabESaw72BdR/pkEt1EqMh4+iPOXmfyrHb93wwkEp0Gt/Bcr1XCGbzSeOqVdNAJuFxiJUO6WnxFWrtUcrauaHJc1K1zWrHHLllrllObovOp3XjU/96rCoCoMq4LfwtMt/zOGTHR4t7b0e6vjsNuZ5/A3/O/YoK+QWPAshrQV5FeVXDuGb8Ncj5dV5+tK933Cuvocwmio3SCm2gRHOtONid7Piox3JgXLFFwHKQBvPqFZ11vSUC2KM6DhlleWKJ9zmhfuYZsuRErXgiuy4apdXOO+IxZzeO5KSnjEmlA6t1KD2F4ymkb37zG2k2/jdEuao543GeCJP3DHeHzsT0Z70sWTrnRf7K75yYvFk+zqlXZNg9bVkbvL2O5k7I1Gw5HnHx+P8Wg4frEvaDWc3+qK5gvae9pMB90S+JkQDEiD6XMlt27jHyxGu/Ku/d3x2fSCBQS3M5FvhMy9mfZbH+z71T8FnP0AUEsHCD5gRIp7BAAAmyAAAFBLAwQUAAgICACWASFHAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7VbRbtsgFH1evwLx3tiO47ap4lZR97BJbbWpL3sl+MZhw+ACSZz+2v5h3zTAJnWatdJSqdq0vdiHy73XcM7lmsllU3G0AqWZFDlOBjFGIKgsmChzvDTz4zN8eXE0KUGWMFMEzaWqiMlx5jy3cXY0SEaps6FGs3Mhb0kFuiYU7ugCKnItKTHedWFMfR5F6/V6EJIOpCqjsjSDRhcY2QUJneMOnNt0O0Hr1LsP4ziJvtxct+mPmdCGCAoY2cUWMCdLbrSFwKECYZDZ1JBj0jCd2k9wMgOe46kbvseo889xmsQpvjh6N9ELuUZy9hWotRq1hG2MH0TOx05fSS4VUjm2+y79c+afhNcLYpHlw7tysgGFVoS72c5is93IAlrrqLUSwSpPE9IGaisHRroGKDxqt2Cz1zadl2dOuO4Ww5mAO7PhgMyC0W8CtKVw2Aty4AMrCnAqtzFwL9oQ7Z45romyohnFqP1Gi8Hu7cd35z6JOir3SLXLEdBj9ZMf79BqxTqI1vHY8zpMxp5Z/95ym70Vt1RKVWjUtIKiTfd+6N7rntBz4g5Ot5pB8jJxVApGe8R9FJZvbblxi6RLtYKd0swO43CYZZ7EZHi6V57JH12erASxstuUStuuEnfdaRMH/oOlSYIySWd56IDPY5esWIOmIW4a3KfDANIARgFkPVGfnhNW1ZxRZg7d2vMVcb8khT9+naKfw/ixDNI4eVUZ7Peo0zc7SK9RAk1PAjgN4CyA8VatF9qU5JsFFEqKx07VM/UZbg/aITX7u6okWepVyZI9WUZvo8oL7cl1IEqUAc2I6PWpKzfx9L958q/8N58nTIDZbvfW4X5NZf9ryrrrpZrbO+Gvqqqb2mVt9Jf2uj4DUe86GoUr78VPUEsHCBS5/A+XAgAAeQsAAFBLAwQUAAgICACWASFHAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1abW/bOBL+3P0VhD/HCt8lFU4XSbq7TdHtFpe9w+FwX2SJttXIkk+SHafYH38zpGTLdpzGjdMcDm2rSCSHQ84880amg5+X04wsTFmlRX7WYx7tEZPHRZLm47PevB71g97Pb34ajE0xNsMyIqOinEb1WU8h5WoetDwmBfalyVlPSkqjERf9ZCRlXyqW9CPNVD+iTIggjBM/DnqELKv0dV58jKammkWxuY4nZhp9KOKotkwndT17fXp6e3vrtct7RTk+HY+H3rJKegS2nldnvebjNbDbmHQrLDmnlJ3+8/cPjn0/zas6ymPTIyjWPH3z06vBbZonxS25TZN6ctbTPogxMel4AnJqqXvkFIlmIOzMxHW6MBVM7TStzPV01rNkUY7jr9wXyVbi9EiSLtLElGc96omAqtCnTIZcCV+wHinK1OR1Q8uaNU9bboNFam4dW/xyWqahDxikVTrMzFlvFGUVSJXmoxI0Chsq59Cs6rvMDKOyba/3w07sXyBJvxjkBlI7RcAYpSf4+PAoRd1uOksrxnukLorMcqbkL8KIovAQFpITon3o4YQpIqEngB6fCOxTTBJBkIQJIiW8JXYzjWMK5itKGINuwinhnHBGuICmUkRponycyIFWh5YZhQepYTvwCOwTAh7bJyQ8HL+AkXJsYBNKaPulkBr4K47bt50iIDKEhbBD+YwI2AO0fUqAo0D2zAohKcF/jEhkz33CAwL8QG7kTPkDoDTtNSpNxxYsLSjqPlA0PBatLVDkJiSAAAXZTvDF3Au3q7Uboq6PCvfi7iXdSzka6aZLR+qkpdLRSPFUMVsheVdIemKFu1fAoCMgQwEAENy5fQmCe2Z27/iSTVO7pjUzymjTG+CPEBugDx3YjyfKI1p5xCGgsc6qzkP3L7rjwe2KWvHHafBppin2Isb3SfdEpbYLMtVZUEFMwn/22VlSHCTjXpUesKKWT4nC37Ag5qfnX3Bw2uacQeN1pJogbWOmtZlWGGhEuAr/GgN0kwN83skBJ5gFtFonAkwDwUYiUEEnG0Aq0Njp29QCa2Asd5mByzY5nDTp4a+d9ADRXK4DOmwNWWG4aCI6rM67MZ1DDODEx1AICQrDAeHAkhNIBRrn7Qn3PTIrqnSl14nJZitArArTfDavN9QWT5P2sy6AOspsYdPQJ0V8c7FSdMPJRFXdZQtVwbr2cFXCRmnyapBFQ5NBBXeNVkDIIsoAqJ5dYVTkNWktQLq+cRnNJmlcXZu6hlkV+Rwtog9RbZa/AnXVrm1p4yKvPpVFfVlk82leERIXGV0JV2Ss880732IlATRkZ0B1B3RnwL933QJGyLwysH5RVi15lCRXSLH2cFDgH3l2d1Ga6GZWpPvE+Bgt0rH1DFR7E5BnWXR3Ma9rhNXxx563Bn5A7MMidwZTNymQ4XVtZo2iB6e2tByYeZylSRrl/wBfauu4j/Pp0JTEfha4ot0SYkJWNShG9LYGlTxod12UyfVdBa5Hlv8yJU4OfNzQnWspGWKriqPMVg92qGnBUNj9E2jH1CxWuEdLs1bhuER1dBpX1UWRrbusVi+jWT0v7WEBskOJ+z3Px5mxlmeVCVV3fDMsltfO5ITj9efdzKxscji2aBKIVlwpIGjeQ/e2NLi1FRW1NNRS0NaG02Q1zkJuKex76N6WCpzCba0RlbViMtouk1bWDGhv0wmtS2ERP8/T+kPbqNP4Zi0qTnDYtoa5yZMdi+fgdMuuBjemzE3WWDaAOS/mlfP7jtGD23yK6sl5nvzNjMHkP0WYMmpg7UjXW05MnE5houtvlBchsH+HrbrexIxL04roophTbTfcOIvd6basfi2L6VW++BOsZmurg9NWnkEVl+kMrZMMIYfdmLX9JWkVQQZMuvM21CLe7vEZ2vEY+/3FffeZp7acZ2mtGSseS9e0+hqb93uPCwdHcp4dV9m1zya/H9M8j8eSH40lRODadJk9OnKARcxmaEBg/qvyqLOpJhc2y5TFZ0ykRU7qtd63/A0Ny2YQYNDQpjVuHxLRvJ4UpT3sw37hjUaZmSkc7RuG4FfjtSpsa8rszcEoBS/JbRGnaERNMgx5SKUxZsh9fzgSOgrCmIXGsH/zRTCLxlL0lfd5Nu41xcZFFN+My2KeJ9sOXdVRWX9CoyO5Va61oCWYMvWwYobEJjwsZL+4SyA3CbREiiEqZAvBNWMY3hOWSZTNJlGHHaRPzHqdMGC5/V4km8FhlC7NlgAAgFPijjqtI632dd57xL6JWeBheWf7rQVtC0C/IsAfo1FlaqtM5ltVMv2QfFEOqFuzqVzB4KHZz4xxPtjanS06bHDYqFsgmlW4FvWUtotJD4753T9qE0WrIcy+G8Hc9W4F5seq+eKl1WwF5+z5tSw83noH1hLPrNfLl9DrM2lOeUJazQUeC46iubiYTiMIbS5EXqZlnJne+pQVUfR/EjG0T6eded0OxI5Zw2IHBgjmabxSc/wVGNpz2TPjsC5Wazid3eSmqmxGdVuGitV+vUuTxOSrBAZHBpMvYM9wOiJkSZs7/Tvaljptz5LZ4I9jrOn6wjoggQmU6ZKct/TnLdU5HOtCTwSBXIccKF/ORbPCubSMMTqdw+Guf098cjv9T+6kq1zuxxNsOkrjb4D9wsF+vgN7cgjsyQ/YvwI7C6BGwDi4CbYLkhZsGyafAO9VjscRkGML4dghnMCLryJGB+jfHgZ6M8z+9rLpi7rspR4ygnUcZV5AhQh9qULNmWqSPvO01sLnkqtQwLDQzxBiHwcG2wHj3SFgvHtZMFwp0ZePBSP0taZcSSr8QErp0NAe94XmvvIlBVyo/wxgfICwsIXDbw6HdzsATNnDCGCIWSm4OX28XDXnyoR+8DgIIJ+AgmFZJgMmBGduOhQpvuBU0YD6SgdBoJxHBDb7BPjrVqF1yP3HBNk9MXYroqXTWZbGaf3tCetyBzlzSMIyT0pY7rTGqfw/TljCoyEPOrWHfMbcdS/Sl/sq0tEhSI9+IP0VpH3u+YHqXG9vA+3OIxZoeyJ5hiLFOKxH+/Li1SF58eopUfloiG/cN4TUF8z3w8APeIg3+RB3fQ9CbegLiLeUC8q+Yxmyqe7dmvD9Iep+/xLq3i5DOH8cFr4XQirTAeeUceZTv7kIgmRIuWYSykUdhs+BxT1VyJWD4f1uFcIPqUL4CwPgzJk9eKfUvRfSPgul7zNYVFMWNs4AVaESWgIMUkim3FUc/rpAgH8EDCZRHmrxvYuQfS4EtZ8Fb7rrPW8P8Z63TwePrm7tjxCsdOhpQeGo2qR9d4fHJZxfuVZcNDnClYhCIrG/Th3yXocRx7umervvvmJ8SFEwPkJRcAStf5MVf5eaQApPhpitIENxOCzsFH/co4yCPTA4vMlAq6ApEHw4TIRCQoCVEFJ5IA6rFh7ylF/+JzzlOFe8zGO8yTzH+Z3D413nlx3XmRziOpMfrvMV1/E9zYTCCkMwkBEvOr6L75x2f69q/x9N81+/3/wXUEsHCD3+JDU3CgAAqy4AAFBLAQIUABQACAgIAJYBIUeZALoixzgAAKQ6AAAvAAAAAAAAAAAAAAAAAAAAAAA1MGEwZWRiOTI5MDRlZWViMjc3YmYzNmE4OWMxOWVlMVwydjhwYWc0My01LmpwZ1BLAQIUABQACAgIAJYBIUfWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAACQ5AABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAlgEhRz5gRIp7BAAAmyAAABcAAAAAAAAAAAAAAAAAgTkAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAICAgAlgEhRxS5/A+XAgAAeQsAABcAAAAAAAAAAAAAAAAAQT4AAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAICAgAlgEhRz3+JDU3CgAAqy4AAAwAAAAAAAAAAAAAAAAAHUEAAGdlb2dlYnJhLnhtbFBLBQYAAAAABQAFAGUBAACOSwAAAAA="}; // is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator, DA=Data Analysis, FI=Function Inspector, PV=Python, macro=Macro View var views = {'is3D': 0,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 1,'PC': 0,'DA': 0,'FI': 0,'PV': 0,'macro': 0}; var applet = new GGBApplet(parameters, '5.0', views); window.onload = function() {applet.inject('ggbApplet')};

Explica a construção.…

Dois pontos de uma circunferência 0

Dois pontos de uma circunferência

Lugares geométricos: Matematicamente Falando 8 - Parte 2 Pág. 43 Ex. 4

Enunciado

Desenha uma circunferência e assinala dois pontos, P e Q.

  1. Determina os pontos da circunferência que são equidistantes de P e Q.
     
  2. A Ana diz que “a mediatriz duma corda tem sempre que passar pelo centro da circunferência”.
    Achas que a Ana tem razão? Porquê?

Resolução >> Resolução

var parameters = { "id": "ggbApplet", "width":637, "height":420, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 73 , 14 68 | 25 52 60 61 | 40 41 42 , 27 28 35 , 6", "showToolBarHelp":false, "showResetIcon":true, "enableLabelDrags":false, "enableShiftDragZoom":false, "enableRightClick":false, "errorDialogsActive":false, "useBrowserForJS":false, "preventFocus":false, "language":"pt", // use this instead of ggbBase64 to load a material from GeoGebraTube // "material_id":12345, "ggbBase64":"UEsDBBQACAgIAE8AIUcAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAE8AIUcAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztml9T4zYQwJ/vPoXGT+0DieXESWAIN9zNdMoMx3UKc9NXxd44KrLkWjJx8ulPlvwvkNBgODLQvmCtIsmr3+5KK5nTT3nM0B2kkgo+dXDPdRDwQISUR1MnU/OjifPp7ONpBCKCWUrQXKQxUVPHL1rW/bTUw8NBUYdySU+4uCIxyIQEcB0sICaXIiDKNF0olZz0+8vlslcN2hNp1I8i1ctl6CCtEJdTpyyc6OE2Oi0Hprnnurj/19dLO/wR5VIRHoCDtLIhzEnGlNRFYBADV0itEpg6iWCrSHAHMTIDNnX+qOSyx9QZu87Zxw+njHK4VisGSC1ocMtBao08pxzGtYXfaRhCAc3pF33kQiyRmP0NgR5HpRnUrzGCaaN//iKYSFGqu/kDB2nIPnbQzAxKWLIgutQrR2RkBSm6I6z4tazRA34VIdjaoa0lnMaGLpIKkkIhJBOA0JRqlRM9nLHqnDBp9Dntl3i2gioYbJCyFQ0q/GqoXAPKfcDJPTSnecaDYsCr7ySt58AzxlqcRr7TZc6e7++Y9dg/9LQTQblq+YaW0C/zFODX1ryx22nebVsbBj/R2njbtD+cBkKkoUT51LkiVw5alc+1fZomhsA1XZevHLRrTTA0+j0RYwgJcB0saoMl7sRyNDEwi8fMPt4vTEZlw/LSCA2+wRZftDru44zYvR+ER/i11p5uC+x+RI/wk/3zW3uzxF4nr8SeXdnM8z8Z5Rf8T4joRuKBB/+z7MRy0yOH73jPMU0sK1n8nTqBiBMG+QsClhAVUs3rupJrxF63rejAKdxegLustCJTrHjXBVf6MAQmG5RW5dbLbwGSG935G79JCZfFIcq2qWA9tq+10vDLzRTce36K9Z5sAf/wjfCgOjpoQNW/ABZBJhvCVqoRT94oYpLllFGSrh744tPJPu/843Xb2Xavyd7Bzz8pWT22QnY78B3cZd7qClk54U4HfH5ScBB7vGSg3ulZiyZEv5dizWjbAektMPpJPrsl1SKpAkkJf5yzgrxJnm6M0LoQOSzkHTvC7sloo0SNchdWat1J2OnMqabESaw72BdR/pkEt1EqMh4+iPOXmfyrHb93wwkEp0Gt/Bcr1XCGbzSeOqVdNAJuFxiJUO6WnxFWrtUcrauaHJc1K1zWrHHLllrllObovOp3XjU/96rCoCoMq4LfwtMt/zOGTHR4t7b0e6vjsNuZ5/A3/O/YoK+QWPAshrQV5FeVXDuGb8Ncj5dV5+tK933Cuvocwmio3SCm2gRHOtONid7Piox3JgXLFFwHKQBvPqFZ11vSUC2KM6DhlleWKJ9zmhfuYZsuRErXgiuy4apdXOO+IxZzeO5KSnjEmlA6t1KD2F4ymkb37zG2k2/jdEuao543GeCJP3DHeHzsT0Z70sWTrnRf7K75yYvFk+zqlXZNg9bVkbvL2O5k7I1Gw5HnHx+P8Wg4frEvaDWc3+qK5gvae9pMB90S+JkQDEiD6XMlt27jHyxGu/Ku/d3x2fSCBQS3M5FvhMy9mfZbH+z71T8FnP0AUEsHCD5gRIp7BAAAmyAAAFBLAwQUAAgICABPACFHAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7VbRbtsgFH1evwLx3tiO47ap4lZR97BJbbWpL3sl+MZhw+ACSZz+2v5h3zTAJnWatdJSqdq0vdiHy73XcM7lmsllU3G0AqWZFDlOBjFGIKgsmChzvDTz4zN8eXE0KUGWMFMEzaWqiMlx5jy3cXY0SEaps6FGs3Mhb0kFuiYU7ugCKnItKTHedWFMfR5F6/V6EJIOpCqjsjSDRhcY2QUJneMOnNt0O0Hr1LsP4ziJvtxct+mPmdCGCAoY2cUWMCdLbrSFwKECYZDZ1JBj0jCd2k9wMgOe46kbvseo889xmsQpvjh6N9ELuUZy9hWotRq1hG2MH0TOx05fSS4VUjm2+y79c+afhNcLYpHlw7tysgGFVoS72c5is93IAlrrqLUSwSpPE9IGaisHRroGKDxqt2Cz1zadl2dOuO4Ww5mAO7PhgMyC0W8CtKVw2Aty4AMrCnAqtzFwL9oQ7Z45romyohnFqP1Gi8Hu7cd35z6JOir3SLXLEdBj9ZMf79BqxTqI1vHY8zpMxp5Z/95ym70Vt1RKVWjUtIKiTfd+6N7rntBz4g5Ot5pB8jJxVApGe8R9FJZvbblxi6RLtYKd0swO43CYZZ7EZHi6V57JH12erASxstuUStuuEnfdaRMH/oOlSYIySWd56IDPY5esWIOmIW4a3KfDANIARgFkPVGfnhNW1ZxRZg7d2vMVcb8khT9+naKfw/ixDNI4eVUZ7Peo0zc7SK9RAk1PAjgN4CyA8VatF9qU5JsFFEqKx07VM/UZbg/aITX7u6okWepVyZI9WUZvo8oL7cl1IEqUAc2I6PWpKzfx9L958q/8N58nTIDZbvfW4X5NZf9ryrrrpZrbO+Gvqqqb2mVt9Jf2uj4DUe86GoUr78VPUEsHCBS5/A+XAgAAeQsAAFBLAwQUAAgICABPACFHAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1a3W/bOBJ/7v4VhJ9jm9+UCqeLpIvFFei26aV3ONzLQZYYRxtZ8kmy4xT7x98MKcmynaRxnbR9uDQKRWo4nPnNp+xOfl3PM7KyZZUW+emAjeiA2DwukjSfnQ6W9dUwGPz65pfJzBYzOy0jclWU86g+HSik7PbBbMSkwLU0gWkciJjLq+FUs3goecSHgeF8yGjIeWz11Bo2IGRdpa/z4kM0t9Uiiu1lfG3n0fsijmrH9LquF6/H49vb21F7/KgoZ+PZbDpaV8mAgOh5dTpobl4Du61Nt8KRc0rZ+F9/vPfsh2le1VEe2wFBtZbpm19eTW7TPCluyW2a1NenA63UgFzbdHaNegrQaYxEC1B2YeM6XdkKtvamTud6vhg4sijH56/8Hck6dQYkSVdpYsvTAR2JIBSMh8bQMORC6wEpytTmdUPLmjPHLbfJKrW3ni3euRMlDQ3YIK3SaWZPB1dRVoFWaX5VAqIgULmEaVXfZXYale18Iw87cf+AJP1ikRso6oGAZ5Se4GXgUqpBoHe0YnxA6qLIHGdK/iKMKAoXYSE5IdrACidMEQkrAawYInBNMUkEQRImiJQwSlxmGp8p2K8oYQyWCaeEc8IZ4QKmShGliTK4kQOtDh0zChdSgzhwCVwTAi63JiRcHO+AkfJsQAgltLtTSA38FUfx3aIIiAzhIFxQhhEBMsDcUAIcBbJnTglJCf4yIpE9N4QHBPiB3siZ8keM0sw3VmkWdszSGkXdZxQNl7PWjlHktknAAhR0O8GB+QHF1do/on6NCj9wP0g/KE8j/XbpSb22VHoaKY5Vs1WS95WkJ065exUMegoyVAAMgpK7QRCUmTnZcZDNVPupczPKaLMa4J8QJ4CHDtzNkfqIVh9xiNFY71QfoQ8fuhfB7YlamKcheJxrigctxh/S7khQ2wOZ6h2oICfhr7v2jhQH6fggpAecqOUxWfgbDjT0exw4Gbc1Z9JEHamukbZx09rOK0w0IuzSv8YE3dQAw3s14ASrgFabQoBlINgqBCroVQMoBRoXjSstcAbmcl8ZuGyLw0lTHv7aKw+QzeUmoYNoyArTRZPR4XTez+kccgAnBlMhFChMB4QDS06gFGjc90C6H5BFUaUdrtc2W3QGcRCm+WJZb8EWz5P2ti6AOspcY9PQJ0V8c94B3XCyUVX32UJXsOk9fJew1Zq8mmTR1GbQwV2iFxCyijIw1MCdcFXkNWk9QPq1WRktrtO4urR1Dbsq8me0it5HtV3/DtRVe7ajjYu8uiiL+m2RLed5RUhcZLRTrshY75737kWnAUxk74HqP9C9B+becwt4QpaVhfOLsmrJoyR5hxSbCAcAP+bZ3Xlpo5tFkT6kxodolc5cZCDsTUJeZNHd+bKu0ayeP678ZuEP5D5schewdZsCGV7WdtEAPRm71nJil3GWJmmU/xNiqe3jPiznU1sSd1vgiU4ktAnpelDM6G0PCp1iK3VRJpd3FYQeWf/blrBZMujZez8g/p1/wkPXzVdxlLlOYovM0TWPZDgKt378YXbV+UO0thtoZyXC1Ju8q86LbLPk0H4bLepl6V4ioGqUqMdZPsus80gHMnTj8c20WF96VxSe1+e7he18dTpzViaQxTj25LNmnPrR0aBoHRV1NNRR0Na306R7zkLuKNw49aOjgmDxojWqslZNRttj0sq5Bx1sB6cLNWzul3lav28ndRrfbFTFDd7mrcNu82TPxXMy3vG3yY0tc5s1Hg/GXBbLyueDXjBAOF1E9fVZnvzdziAULiIsJTWw9qQbkRMbp3PY6Ncb8CI07D9AVL+a2FlpWxV9dvPQ9tOQ9+S9Zcfq97KYv8tXn8FrdkSdjFt9JlVcpgv0TjKF2nZjN/6XpFUElTHp79uCRfz2QCxRjJe73v0Xfz9kI7UVSPDG6bwZOyFH18yGGqf3R49PE88UPHuhsu+fTd1/Tvd8Ppb82VhCZq5tn9mTMwd4xGKBDgTu37VNPaGaGtkcUxZ/YoEtclJvcN+JN3QsV1mAQUOb1ig+FKhlfV2U7kMAkBdGdMrMzuGVv2HoLN9B8dF9loDikGKKJ+9A5Sd2hW99TkCgujcNOrWjbHEdeZ/26S66w/rTCzzH9o8i2Q1HiHanSOVL2wgNsbDWe0WLhCuPzl23KizEV0XWLnywKb/D/YbuVqEv/lMnjzJigAVhK7/41Z1cAdB7+L4C5MWPAPLj1VVla9Td682+J8h8FGyDLB4FWTwR5LiYz6M8Ibl7y3iblnFmB5seN6LotCRiCLkHclm3D2LPrGGxZzEImTTuLBJ/xWJtV/zCvr9pCWrojW9yW1XOnJ098OZvaZLYvDMw9Gs2X4HI0JoSsqbNB6p3tK0n7coaYBr6csOapS+sZyNwiDJdk7OW/qylOoOeeshHzBh4+TgTDd8ziY/R/mfKMd4LMy/ef3OvUeWzKr4zpFdp/LipL1w8bVs63jPxp8dNvB2Un44JSsZ9QnfjNwfmkLPvFppiJIQSTGpFpTZUSX/yiIdUSKlDpUImVKhfIE4v7QzXd8z36aFAnT5uxarh1tpp+nOE6lYWVDTUSgkqJQ20pKbJiZT1LSA81kMz0kJprimHdyzDVHBE7O8EVzpfZGmc1h3GGbrIuxzbat9J7DfiN9YusK37mH8uo7zC71q2O/ADE/KDdk4OScjJUVZu+6/2reyFEjL7kRlZj6QMjKah4QoCWuzm5nsSgEvU96SAIxL1vS5w4V3g054L2ENcwP7fBb7iAmLEJQukMZzJQBi25wO9+nxPh3aE2buUsmP5xFsePx3jHRg9Bzj7DzukZiP5T+EEW4UV0jdVhukwoKHwdVWMTEhloKlghoWMSvMsLxnfAjrfA/38MNDPf0LQAUhOuTIyoFoZw/CLQPdux8MwUIHWAr/rVzJ4AdjfQwLYQRz90mHeQLsFd/Q42JhPOiSjnw1pMZIh1dwIbQKpA9V0MppJE4Y6CJli0Lo4lPnIQObRgZACVg3d+1jzkHz5SCNzeEDE3jjRg1nooBx0/Ms8tIEHWqj3zqCdCYbyiZHCRwpSEedaQ4nnkI9EY0IRUCPAYwwGUBi+QN//NHPck58Oyk4/2ByBh1M90RzAGVs0A72YEiaEqPLmpKNwyx4Yac9gkHH/k0D3jVDzn5je/A9QSwcI4mq3+DcJAAB1JQAAUEsBAhQAFAAICAgATwAhR9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICABPACFHPmBEinsEAACbIAAAFwAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWxQSwECFAAUAAgICABPACFHFLn8D5cCAAB5CwAAFwAAAAAAAAAAAAAAAAAdBQAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWxQSwECFAAUAAgICABPACFH4mq3+DcJAAB1JQAADAAAAAAAAAAAAAAAAAD5BwAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAAGoRAAAAAA=="}; // is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator, DA=Data Analysis, FI=Function Inspector, PV=Python, macro=Macro View var views = {'is3D': 0,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 1,'PC': 0,'DA': 0,'FI': 0,'PV': 0,'macro': 0}; var applet = new GGBApplet(parameters, '5.0', views); window.onload = function() {applet.inject('ggbApplet')};

Justifica que A e B são os pontos procurados.…

Um triângulo rectângulo 0

Um triângulo rectângulo

Lugares geométricos: Matematicamente Falando 8 - Parte 2 Pág. 43 Ex. 3

Enunciado

Desenha um triângulo rectângulo [ABC], cujos catetos medem, respectivamente, 3 cm e 4 cm.

Desenha a circunferência circunscrita.
Quanto mede o raio desta circunferência?

Resolução >> Resolução

var parameters = { "id": "ggbApplet", "width":701, "height":450, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 73 , 14 68 | 25 52 60 61 | 40 41 42 , 27 28 35 , 6", "showToolBarHelp":false, "showResetIcon":true, "enableLabelDrags":false, "enableShiftDragZoom":false, "enableRightClick":false, "errorDialogsActive":false, "useBrowserForJS":false, "preventFocus":false, "language":"pt", // use this instead of ggbBase64 to load a material from GeoGebraTube // "material_id":12345, "ggbBase64":"UEsDBBQACAgIAPW+H0cAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAPW+H0cAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztml9T4zYQwJ/vPoXGT+0DieXESWAIN9zNdMoMx3UKc9NXxd44KrLkWjJx8ulPlvwvkNBgODLQvmCtIsmr3+5KK5nTT3nM0B2kkgo+dXDPdRDwQISUR1MnU/OjifPp7ONpBCKCWUrQXKQxUVPHL1rW/bTUw8NBUYdySU+4uCIxyIQEcB0sICaXIiDKNF0olZz0+8vlslcN2hNp1I8i1ctl6CCtEJdTpyyc6OE2Oi0Hprnnurj/19dLO/wR5VIRHoCDtLIhzEnGlNRFYBADV0itEpg6iWCrSHAHMTIDNnX+qOSyx9QZu87Zxw+njHK4VisGSC1ocMtBao08pxzGtYXfaRhCAc3pF33kQiyRmP0NgR5HpRnUrzGCaaN//iKYSFGqu/kDB2nIPnbQzAxKWLIgutQrR2RkBSm6I6z4tazRA34VIdjaoa0lnMaGLpIKkkIhJBOA0JRqlRM9nLHqnDBp9Dntl3i2gioYbJCyFQ0q/GqoXAPKfcDJPTSnecaDYsCr7ySt58AzxlqcRr7TZc6e7++Y9dg/9LQTQblq+YaW0C/zFODX1ryx22nebVsbBj/R2njbtD+cBkKkoUT51LkiVw5alc+1fZomhsA1XZevHLRrTTA0+j0RYwgJcB0saoMl7sRyNDEwi8fMPt4vTEZlw/LSCA2+wRZftDru44zYvR+ER/i11p5uC+x+RI/wk/3zW3uzxF4nr8SeXdnM8z8Z5Rf8T4joRuKBB/+z7MRy0yOH73jPMU0sK1n8nTqBiBMG+QsClhAVUs3rupJrxF63rejAKdxegLustCJTrHjXBVf6MAQmG5RW5dbLbwGSG935G79JCZfFIcq2qWA9tq+10vDLzRTce36K9Z5sAf/wjfCgOjpoQNW/ABZBJhvCVqoRT94oYpLllFGSrh744tPJPu/843Xb2Xavyd7Bzz8pWT22QnY78B3cZd7qClk54U4HfH5ScBB7vGSg3ulZiyZEv5dizWjbAektMPpJPrsl1SKpAkkJf5yzgrxJnm6M0LoQOSzkHTvC7sloo0SNchdWat1J2OnMqabESaw72BdR/pkEt1EqMh4+iPOXmfyrHb93wwkEp0Gt/Bcr1XCGbzSeOqVdNAJuFxiJUO6WnxFWrtUcrauaHJc1K1zWrHHLllrllObovOp3XjU/96rCoCoMq4LfwtMt/zOGTHR4t7b0e6vjsNuZ5/A3/O/YoK+QWPAshrQV5FeVXDuGb8Ncj5dV5+tK933Cuvocwmio3SCm2gRHOtONid7Piox3JgXLFFwHKQBvPqFZ11vSUC2KM6DhlleWKJ9zmhfuYZsuRErXgiuy4apdXOO+IxZzeO5KSnjEmlA6t1KD2F4ymkb37zG2k2/jdEuao543GeCJP3DHeHzsT0Z70sWTrnRf7K75yYvFk+zqlXZNg9bVkbvL2O5k7I1Gw5HnHx+P8Wg4frEvaDWc3+qK5gvae9pMB90S+JkQDEiD6XMlt27jHyxGu/Ku/d3x2fSCBQS3M5FvhMy9mfZbH+z71T8FnP0AUEsHCD5gRIp7BAAAmyAAAFBLAwQUAAgICAD1vh9HAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7VbRbtsgFH1evwLx3tiO47ap4lZR97BJbbWpL3sl+MZhw+ACSZz+2v5h3zTAJnWatdJSqdq0vdiHy73XcM7lmsllU3G0AqWZFDlOBjFGIKgsmChzvDTz4zN8eXE0KUGWMFMEzaWqiMlx5jy3cXY0SEaps6FGs3Mhb0kFuiYU7ugCKnItKTHedWFMfR5F6/V6EJIOpCqjsjSDRhcY2QUJneMOnNt0O0Hr1LsP4ziJvtxct+mPmdCGCAoY2cUWMCdLbrSFwKECYZDZ1JBj0jCd2k9wMgOe46kbvseo889xmsQpvjh6N9ELuUZy9hWotRq1hG2MH0TOx05fSS4VUjm2+y79c+afhNcLYpHlw7tysgGFVoS72c5is93IAlrrqLUSwSpPE9IGaisHRroGKDxqt2Cz1zadl2dOuO4Ww5mAO7PhgMyC0W8CtKVw2Aty4AMrCnAqtzFwL9oQ7Z45romyohnFqP1Gi8Hu7cd35z6JOir3SLXLEdBj9ZMf79BqxTqI1vHY8zpMxp5Z/95ym70Vt1RKVWjUtIKiTfd+6N7rntBz4g5Ot5pB8jJxVApGe8R9FJZvbblxi6RLtYKd0swO43CYZZ7EZHi6V57JH12erASxstuUStuuEnfdaRMH/oOlSYIySWd56IDPY5esWIOmIW4a3KfDANIARgFkPVGfnhNW1ZxRZg7d2vMVcb8khT9+naKfw/ixDNI4eVUZ7Peo0zc7SK9RAk1PAjgN4CyA8VatF9qU5JsFFEqKx07VM/UZbg/aITX7u6okWepVyZI9WUZvo8oL7cl1IEqUAc2I6PWpKzfx9L958q/8N58nTIDZbvfW4X5NZf9ryrrrpZrbO+Gvqqqb2mVt9Jf2uj4DUe86GoUr78VPUEsHCBS5/A+XAgAAeQsAAFBLAwQUAAgICAD1vh9HAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1b3XLbxhW+Tp5ih9cStP/AZqRkJDmOPePEnirtdHqTAYEViQgEWACUKE9eqRd9ht73mXrOLkCCf4pIyZbbJjEN7GL37J7znZ8PS/r0u/kkJ7e2qrOyOBuwgA6ILZIyzYrR2WDWXB9Hg+++/fp0ZMuRHVYxuS6rSdycDRSOXMyDVsCkwL4sPRsYmYTRtVTHqTbyWFIdH5vEmmOmEhmbVFvL4gEh8zr7pih/iie2nsaJvUrGdhK/K5O4cULHTTP95uTk7u4u6JYPymp0MhoNg3mdDghsvajPBu3NNyBuZdKdcMM5pezkrz++8+KPs6Ju4iKxA4JqzbJvv/7q9C4r0vKO3GVpMz4bhMwMyNhmozHqGUHjBAdNQdmpTZrs1tYwtdd0OjeT6cANiwt8/pW/I/lCnQFJs9sstdXZgAZCSa0Ml5FROoqkUgNSVpktmnYwaxc96cSd3mb2zsvFO7ekpCYEELI6G+b2bHAd5zWolRXXFZgUdlTNoFk397kdxlXXXm6IHbn/YUj20aI0QM9bAp5ReoSfED5KUb+b3tKK8QFpyjJ3kin5jTCiKHwIM+SI6BB6OGGKSOiJoCckAvsUk0QQHMIEkRKuEruZxmcK5itKGINuwinhnHBGuICmUkRpokKcyGGsNk4YhQ+Ohu3AR2CfEPBxfULCh+MdCFJeDGxCCe3uFI4G+Yrj9l2niIg0sBB2qJARAXuAdkgJSBQonjklJCX4hxGJ4nlIeERAHuiNkil/AJS2vUSl7ViDpQNFbQNFw8ehtQaKXIUEEKCg2xFemL/gdrX2j6jvo8JfuL9If1F+jPTTpR/qtaXSj5HiqWp2SvK+kvTIKbdVwainIEMFABDcubsIgntmbu94kW1T+6ZzM8po2xvhXwYbYA8duZsn6iM6fcQ+oLHeqj5Cdy+6EcHdiiFlj7Pg01xT7ESM79LuiUbtFmSqt6CCnIR/3GdjSbGXjjtNuseKWj4lCx+wYEg/x4KnJ13NOW2jjtRjHNu6aWMnNSYaYRbpX2OCbmtAyHs14AirgFbLQoBlIFopBCrqVQMoBRo7Q1daYA3M5b4ycNkVh6O2PPy2UR4gm8tlQoetoShMF21Gh9V5P6dzyAGchJgKoUBhOiAcRHICpUDjvB3pfkCmZZ0t7Dq2+XQBiDNhVkxnzYrZkkna3TYljI5zx2za8WmZ3FwsDN1KsnHd9MUCK1iSD88SVrjJV6d5PLQ5ULgr9AJCbuMcgBq4Fa7LoiGdB0jfN6ri6ThL6ivbNDCrJr/Gt/G7uLHz1zC67tZ2Y5OyqD9UZXNZ5rNJUROSlDldKFfmrHfPe/dioQE0ZO+B6j/QvQfh1nVLeEJmtYX1y6ruhsdp+hZHLCMcDPi+yO8vKhvfTMtslxo/xbfZyEUGmr1NyNM8vr+YNQ3C6uVjzysLf0HuQ5Y7hamrI1DgVWOnraFPTxy3PLWzJM/SLC7+ArHU8bifZpOhrYi7LXFFtyXEhCxIKGVLEipC1u26rNKr+xpCj8z/ZiuYzJmj4ve+JXyrTuLcsQf3qN9yYuztAul4bpdGG1VogF7jbX1R5ssuZ8fLeNrMKvd+APWgwh2eF6PcOl9z5gOindwMy/mVdzLhZf18P7ULLxyOHH4E8hNH8jtqr0N/dWNwa4tR1I2hbgTtvDZLF8+Z4W6Euw791Y2CMPBba1VlnZqMdstktQOeDlbDzgUR8vZZkTXvukaTJTdLVXGCR7NzxVWZ7Llknp6sedLpja0Km+NqEA21eOWjfLkHcEiAeFbOav+k5/ww4UPcjM+L9E92BK7/IcbS0cCC60JSm2QTmOj7W5PGCPefQQHfm9pRZTvFfTbzBu+nHe+5G91O1OuqnLwtbn8GX1rb6ulJp+VpnVTZFH2WDKGW3dilV6ZZHUMlTPvzVowlXu2IHdqLHHf/0d8fs0CtBdHc+TgyHzeubR3r3THl08IzhdRGAG16bVvnn9Npn08kfzaRkIkb2xf26HwCHjGdogOB+y9oUm9TbU1sl6nKX7GglgVplnZfi0J0LFdJQEA7Nmtw+1CQZs24rNxbP+wXruiUuZ3AK34r0CG/MMW5OzzA7ZByiCuvmco37C2+5bkNwqitydGpHefTcex92ifB+B7rTS/wnNj319e1bcgcPR64DBQ3FvYe/1im69EKycDpWftKFyBOU2u903SGctXSefNKwYXwq3EtmMXdYsewP6DOH/25kzc7GgXrhl9X9HvXkgdg4e3pMJhM4iIlhWPAl1mV5Haw5F8xRQOTmC0klrOme5B4Ya2IDZgA3ixZwJD8Dkw9hfsAcdRz1F6H7fWRIG2gsKxoDZC2m8LWtQuwhfnx5k2WprZYuDMQCVvcwn6BMxEyp+1R3z3tEl/XM2ceF3jG2q6PrAcQ4F9lc3LejT/vRp0D2TuOAhOBZueiFXsunTTE+1y5vtZ77d8Lr0Lt4x3Za3adJQ8D+8GFzCquyQagFw8Duhp3F4+Juw08Gfc5xl2fEHTMx4H+9EHHAs60USFjIdeRiaiPdx6EinMlZUQFZ1SyTxGPV3aE/dsD8mIDv/hh/OpWWodQ/PlDsgchlx5CxrZiyNdxOAaLm3WL3zuLmxV8lAOCBiKMjIwizgU3PJIbrHaPHLAWc9lkmmdJ1iwAyNF/3hbIA33p22SON9ZOkYe8L36u4qLGbwNWKeNuL3hfQUUclUWcv4PNrznDhXeGeMMZhg87A9phgfTwC0jOPaS3QXq/wwMAahNQZoyUOpSRMlKEj0Ga7Q/1nnWzRUZuIJPuUzfTLwCaL7hu6gCAZ4xqRXnEGA/Xa+i29I0V9XhLAn9CgV0E/5oTpN4JhnDhC9v0fOFyn5J7eVDJ1d4TtHcEfUiy9vHHHxe+MjDCGC2oYVRQiEafpXlktJTGUM3hE/JPUC4/lPk95Mld5dJBcLkBwbTM//UPmFYyPzD5hfmhsbsBbxr+wn4PJr9wB0RP5KHxs3fEMyUczoq1Rz1LmNk+4d4378P8AQ11EAfcvdPHswfRsoftr13dectsnuVZXN1vlOP/T17xO3zw5fCkbYGXT0WTBVJzTQEgAI+ZUPoXBRGEXFCqTChCzQT+NOEjeg8PKMefE0TGRPBKEsn/GTCHLwemz/jcPB1LiLB+zWhjXgYR6xUYCFKPJv44hAulMJqZDoEQ/DfBuVrK3CnmnoXs3/98uEq5I+MF/DB6cY68ebwM97O2hwUqpCHYm+vQxZU+sEJ154v04ALFDsCzc7gqWdILpg7g85e7XrvtPnze/sHnH+DzDCZqLZlRkivI4EgTV/n8Jrt0bH4Lv/x0bN7uYvOv9mHzr16KzYv92LyQCjgQDYEeGcYiN1kFXGKOlVHIjNAIw7Oz+ceBwDdA+H4fEL5/WRDE40BgUPEY2J8JoCsUiGf7NQB4PXBWHVGmuYTiF30KHLYcOr3yEHy/YfvrPQ6drg8y/e4i8ljLc082tx8di3XT6wBeDMC2igopQqZ1dxSlhAA8jAzDMIoi3RJKGYSCKcU4dIZSC/WpGEgST93Rttv1hB1+PnW+AeJon3o2+qOePVDPYJ5SUWSENCEDjxD4FvlFHVAl3gtGu0ra632y6euXyqbH3XHA4/IpGD2URkcyhFAFC0MQt1/qCKoZvFyEVIWhhpD/jHVtFYnNuvbDPkj88FJI+Pz44JfhSxxEQCOke1HIJRcSX9hwNg0kwAC8g8ILPKTdiH2esvbaI/DDhunHe5S18QuVNfUAodioakAojDGRkppGQjKtfPzAm7XA9zzNQ/D/KGyrWhhEQC1CEQFKSpvPVdT4YXF07VEcb6D4Zp8AevNCMHZfbT/yuzIDQREaIZQWiKZuT+p5IIGWUxMBRQG6yPxpu1CBWfnvGcNpK8V4s4ti3OxDMW4OoxiH/rbncfRCfBn0QknGIUuGjJtIRvjvr1bZBfBUjmebSmKlYxEGumMXNIBXhohzaZRgEshstB+7OOn/esv9arf9l2bf/gdQSwcIrcxKTaELAAAaNwAAUEsBAhQAFAAICAgA9b4fR9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAD1vh9HPmBEinsEAACbIAAAFwAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWxQSwECFAAUAAgICAD1vh9HFLn8D5cCAAB5CwAAFwAAAAAAAAAAAAAAAAAdBQAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWxQSwECFAAUAAgICAD1vh9HrcxKTaELAAAaNwAADAAAAAAAAAAAAAAAAAD5BwAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAANQTAAAAAA=="}; // is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator, DA=Data Analysis, FI=Function Inspector, PV=Python, macro=Macro View var views = {'is3D': 1,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 1,'PC': 0,'DA': 0,'FI': 0,'PV': 0,'macro': 0}; var applet = new GGBApplet(parameters, '5.0', views); window.onload = function() {applet.inject('ggbApplet')};

Quanto mede o raio da circunferência circunscrita ao triângulo?…

Dois pontos, A e B 0

Dois pontos, A e B

Lugares geométricos: Matematicamente Falando 8 - Parte 2 Pág. 43 Ex. 2

Enunciado

Escolhe dois pontos, A e B.

Determina os pontos que distam, simultaneamente, 2 cm de A e 3 cm de B.

Quantas soluções tem o problema?
Discute os diferentes casos possíveis.

Resolução >> Resolução

Explora a animação para responder às questões colocadas.

var parameters = { "id": "ggbApplet", "width":673, "height":380, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49 50 , 71 | 30 29 54 32 31 33 | 17 26 62 73 , 14 68 | 25 52 60 61 | 40 41 42 , 27 28 35 , 6", "showToolBarHelp":false, "showResetIcon":true, "enableLabelDrags":false, "enableShiftDragZoom":false, "enableRightClick":false, "errorDialogsActive":false, "useBrowserForJS":false, "preventFocus":false, "language":"pt", // use this instead of ggbBase64 to load a material from GeoGebraTube // "material_id":12345, "ggbBase64":"UEsDBBQACAgIAJG9H0cAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJG9H0cAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztml9T4zYQwJ/vPoXGT+0DieXESWAIN9zNdMoMx3UKc9NXxd44KrLkWjJx8ulPlvwvkNBgODLQvmCtIsmr3+5KK5nTT3nM0B2kkgo+dXDPdRDwQISUR1MnU/OjifPp7ONpBCKCWUrQXKQxUVPHL1rW/bTUw8NBUYdySU+4uCIxyIQEcB0sICaXIiDKNF0olZz0+8vlslcN2hNp1I8i1ctl6CCtEJdTpyyc6OE2Oi0Hprnnurj/19dLO/wR5VIRHoCDtLIhzEnGlNRFYBADV0itEpg6iWCrSHAHMTIDNnX+qOSyx9QZu87Zxw+njHK4VisGSC1ocMtBao08pxzGtYXfaRhCAc3pF33kQiyRmP0NgR5HpRnUrzGCaaN//iKYSFGqu/kDB2nIPnbQzAxKWLIgutQrR2RkBSm6I6z4tazRA34VIdjaoa0lnMaGLpIKkkIhJBOA0JRqlRM9nLHqnDBp9Dntl3i2gioYbJCyFQ0q/GqoXAPKfcDJPTSnecaDYsCr7ySt58AzxlqcRr7TZc6e7++Y9dg/9LQTQblq+YaW0C/zFODX1ryx22nebVsbBj/R2njbtD+cBkKkoUT51LkiVw5alc+1fZomhsA1XZevHLRrTTA0+j0RYwgJcB0saoMl7sRyNDEwi8fMPt4vTEZlw/LSCA2+wRZftDru44zYvR+ER/i11p5uC+x+RI/wk/3zW3uzxF4nr8SeXdnM8z8Z5Rf8T4joRuKBB/+z7MRy0yOH73jPMU0sK1n8nTqBiBMG+QsClhAVUs3rupJrxF63rejAKdxegLustCJTrHjXBVf6MAQmG5RW5dbLbwGSG935G79JCZfFIcq2qWA9tq+10vDLzRTce36K9Z5sAf/wjfCgOjpoQNW/ABZBJhvCVqoRT94oYpLllFGSrh744tPJPu/843Xb2Xavyd7Bzz8pWT22QnY78B3cZd7qClk54U4HfH5ScBB7vGSg3ulZiyZEv5dizWjbAektMPpJPrsl1SKpAkkJf5yzgrxJnm6M0LoQOSzkHTvC7sloo0SNchdWat1J2OnMqabESaw72BdR/pkEt1EqMh4+iPOXmfyrHb93wwkEp0Gt/Bcr1XCGbzSeOqVdNAJuFxiJUO6WnxFWrtUcrauaHJc1K1zWrHHLllrllObovOp3XjU/96rCoCoMq4LfwtMt/zOGTHR4t7b0e6vjsNuZ5/A3/O/YoK+QWPAshrQV5FeVXDuGb8Ncj5dV5+tK933Cuvocwmio3SCm2gRHOtONid7Piox3JgXLFFwHKQBvPqFZ11vSUC2KM6DhlleWKJ9zmhfuYZsuRErXgiuy4apdXOO+IxZzeO5KSnjEmlA6t1KD2F4ymkb37zG2k2/jdEuao543GeCJP3DHeHzsT0Z70sWTrnRf7K75yYvFk+zqlXZNg9bVkbvL2O5k7I1Gw5HnHx+P8Wg4frEvaDWc3+qK5gvae9pMB90S+JkQDEiD6XMlt27jHyxGu/Ku/d3x2fSCBQS3M5FvhMy9mfZbH+z71T8FnP0AUEsHCD5gRIp7BAAAmyAAAFBLAwQUAAgICACRvR9HAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7VbRbtsgFH1evwLx3tiO47ap4lZR97BJbbWpL3sl+MZhw+ACSZz+2v5h3zTAJnWatdJSqdq0vdiHy73XcM7lmsllU3G0AqWZFDlOBjFGIKgsmChzvDTz4zN8eXE0KUGWMFMEzaWqiMlx5jy3cXY0SEaps6FGs3Mhb0kFuiYU7ugCKnItKTHedWFMfR5F6/V6EJIOpCqjsjSDRhcY2QUJneMOnNt0O0Hr1LsP4ziJvtxct+mPmdCGCAoY2cUWMCdLbrSFwKECYZDZ1JBj0jCd2k9wMgOe46kbvseo889xmsQpvjh6N9ELuUZy9hWotRq1hG2MH0TOx05fSS4VUjm2+y79c+afhNcLYpHlw7tysgGFVoS72c5is93IAlrrqLUSwSpPE9IGaisHRroGKDxqt2Cz1zadl2dOuO4Ww5mAO7PhgMyC0W8CtKVw2Aty4AMrCnAqtzFwL9oQ7Z45romyohnFqP1Gi8Hu7cd35z6JOir3SLXLEdBj9ZMf79BqxTqI1vHY8zpMxp5Z/95ym70Vt1RKVWjUtIKiTfd+6N7rntBz4g5Ot5pB8jJxVApGe8R9FJZvbblxi6RLtYKd0swO43CYZZ7EZHi6V57JH12erASxstuUStuuEnfdaRMH/oOlSYIySWd56IDPY5esWIOmIW4a3KfDANIARgFkPVGfnhNW1ZxRZg7d2vMVcb8khT9+naKfw/ixDNI4eVUZ7Peo0zc7SK9RAk1PAjgN4CyA8VatF9qU5JsFFEqKx07VM/UZbg/aITX7u6okWepVyZI9WUZvo8oL7cl1IEqUAc2I6PWpKzfx9L958q/8N58nTIDZbvfW4X5NZf9ryrrrpZrbO+Gvqqqb2mVt9Jf2uj4DUe86GoUr78VPUEsHCBS5/A+XAgAAeQsAAFBLAwQUAAgICACRvR9HAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1aWXPbOBJ+zvwKFJ8tGQfBIyVnysekNlW5ap2Z2tqtfYBIWMKYIrkkJcuu+fHbDZASJcaOZTuZ3XHC4GCjge6vL9CZ/LxeZGSlq9oU+YnHxtQjOk+K1OSzE2/ZXI0i7+c3P01mupjpaaXIVVEtVHPiSaTcrIPRmPkC50x64ik5nfpUTkdXkQxHPmV6FAVxMlKUyyCRoQ7S1CNkXZvXefFRLXRdqkRfJnO9UO+LRDWW6bxpytfHxzc3N+Nu+3FRzY5ns+l4XQMDOHpen3ht5zWw21l0Iyw5p5Qd/+PDe8d+ZPK6UXmiPYJiLc2bn15NbkyeFjfkxqTN/MQLYuaRuTazOcrJIo8cI1EJwpY6acxK17C0N7QyN4vSs2Qqx/evXI9kG3E8kpqVSXV14tGxCGIqqIhpKCIa0DD0SFEZnTctMWs3Pe7YTVZG3zi+2LNb+jSGdStTm2mmT7wrldUglsmvKlApnKhawrBubjM9VVU33h6IHdk/QGLuNHID9JwmYMDpkeDiKKT0SErqTtPbWjLukaYoMsuZkj8II5LCQ1hMjkgQwgwnTBIfZiKYCYnAOcl8IgiSMEF8H1ofp1mA7ySsl5QwBtOEU8I54YxwAUMpiQyIDHEhB9ogtswoPEgNx4FH4JwQ8Ng54cPDsQeMpGMDh5AisD2J1MBfcjy+nRQR8WPYCCdkyIiAM8A4pAQ4CmTPrBA+JfiXER/Z85DwiAA/kBs5U/4AKO14i0o7sQdLB4rsg8IADHwCeCxae6D4u5AAAhRkO8KGuQaPGwTuFXVzVLiGu8Z3jXQ0vlvuO1InLfUdjS+eK2YnJO8LSY+scF8VMOoJyFAAAARPbhtB8MzMnh0bvx0GbmjNjDLazkb4T4wD0EcQ2c4z5RGdPOIQ0FhvV+eh92868OBuxyAUj9Pg80xT3IsYv0+6h5S6H6CGOu32Y7K3n4SQhH/tM9hRPCTiN0PiEzYMdtzuR4sbHrLjk8WdHHfpZ9KKSuo50rYW2+hFjTFHxJtMEGCsbtNByHvp4AgTQiC3OQEzQrSTE2TUSwyQFQKcDG2WgT0wrLskwf0uTxy1meKPQaaAwO5vYzscDVlh5GiDO+zO++GdQzjgJMSoCLkKIwPhwJITyAoBrrsn8nukLGqz0etcZ+UGEKtCk5fLZkdtySLtuk0B1CqzRU5LnxbJ9dlG0S0nreqmzxYKhG0d4gqGnTLl1SRTU51BNXeJVkDISmXox3aHqyJvSGcBvpubVaqcm6S+1E0Dq2ryu1qp96rR67dAXXd7W9qkyOvPVdGcF9lykdeEJEVGN8IVGev1ea8vNhLAwO+9kP0XQe9F+NV9C3hDlrWG/Yuq7shVmr5Dim1AAwV+yrPbs0qr67Iw94nxUa3MzHoGqr2NzWWmbs+WTYOwOv44c6HhHwiDWPCWsHSXAhleNrrEcGAxsmXmRC+TzKRG5b+BL3Ul3cflYqorYrsF7miPhJiQTT2Kwb2rRzG3tKcuqvTytgbXI+t/6goWc2ar8ls3Em5UJyqzhYR91R9ZNnq1QVqt9VZpswoV0Bu8q8+KbDtl9XiuymZZ2asCHLHCE57ms0xbW7Pqg5o7uZ4W60tnZMLx+nJb6lY5rybTmcWPQHziUgJB205da2nwaBsqammopaCd1Zp0857F3FLYdupaSwVu4I7Wiso6MRnttjG1BZ56u25nnQhL+GVumvfdoDHJ9VZUXODQ7Exxlyd7KZ6T4z1LmlzrKtdZa8sA5rJY1s7Te2YOjvJZNfPTPP27noGRf1aYJBpg7Ui3R051Yhaw0M23ylMI7K9wVDeb6lmlOxFd3HKqtW93bHQwbVm9rYrFu3z1Baxm76iT406eSZ1UpkTrJFPIWtd6a3+pqRXkvLS/bkct4uIeL6E9H7H9O9cfsbHcc5e1tWYsdyxdOxoF93uPCwAv5DwDVxnaZ5vRX9I8X44lfzGWEHMb3Wf26MgBFlGWaEBg/puCqHeoNvu121TF75g6i5w0W73v+Rsals0ZwKClNQ0eH1LPspkXlb3qw3mhRaPM9ALu9S1Di/xGFaf2iwEehxRT3HlPVW6gV3i1swcEqq+GQSu2ysq5cjbtwp26xczSczzL9tPVVa0bsgZDjsERYHHQe/uhSPedFWKBFbN2KW2MMJVaO5vp9GTTojXmncwK3lfbrdhY2M3YOKY7P8Djzn14chCggjBb7FQqbnYvkAAuTrff0PLZn6xlJzj3v7+W5Ri/VtnCBG8lL6DXpFgsVJ6S3N4nzk2VZNrbVrOKohETxTZpolg23YvEMWtZDEACFzLJBoTkGyB19e/LojTAYVsiNFAFX+e6rm0c2wCAnb+ZNNX5JmpAZabzFRwZilBC1rT9jHpLu/zSzaxBTSOXflg7dcd6GIEFVGZNTjv6047qlGNH7DpOCPOi3eLUtwTQkdbXBj7mDvqf3MlWu3iL9wRzZZIngH7mQBcD0NNDQE9fAHRO/bYS/AuCzv1xRFm8/Qn2QB85l7ewW6d/BtCfbdTcxTkZAHz+MMC7ofd8CPBu9ftg7GXcJXXbPtezXyiPcfCtmPkRkzELmRQ+twFXjGkUhtSXsQhCn/PoO0Tfr+GTDvC5OASfi78aPuGYAQoBk4zGEQ8jl3vBiyJfBjyO4F0c+98DnUs9w/k9fM5dnDwdwKQehqluuXU4qOfUMIy2F2LaXoixPRgnvq9rBqGnb/Nh3FZ4wcBD7tz1igkRSClo4Mc+ix8TfNk90XcvwJlFmZnENBs1Z2gj73K83bqCfngfvta6xNvVp/xLpfIaf7G5exE+FOs2J14MsJ4ehvX0fxBriHvc77tQGHTlfLznb4B1MBYhpyyM/DgScRgNvr/8/0C9YTxIjBbsFBq+OWsP818OCcO/PAdxrPRnrpm65vArirs1jMRDAXprDB/VR0tv2zvXvlwgfZzGh9eNt4do/O2frfHgEVfvH6Xxr4ez9l53NlC0Piyc6UNVDXeE1LhKAL/cd3XJEIfuow998gVgGOfoOPStqoOxH8b9H9mmMTHmoT+8XD3pEvGjY9suUtOiyLTKt9ctixQsXurBNt/A78Eb+eOR2TqIqyUedo/2dwvkyqx12j9IokprP5b6Q1E3larIv07P/r2vj+P+dzz7m5r2Pxq9+S9QSwcI7frC2y4JAAAZJQAAUEsBAhQAFAAICAgAkb0fR9Y3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICACRvR9HPmBEinsEAACbIAAAFwAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWxQSwECFAAUAAgICACRvR9HFLn8D5cCAAB5CwAAFwAAAAAAAAAAAAAAAAAdBQAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWxQSwECFAAUAAgICACRvR9H7frC2y4JAAAZJQAADAAAAAAAAAAAAAAAAAD5BwAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAAGERAAAAAA=="}; // is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator, DA=Data Analysis, FI=Function Inspector, PV=Python, macro=Macro View var views = {'is3D': 0,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 1,'PC': 0,'DA': 0,'FI': 0,'PV': 0,'macro': 0}; var applet = new GGBApplet(parameters, '5.0', views); window.onload = function() {applet.inject('ggbApplet')};

<< Enunciado