Tagged: ângulos

0

[PQRS] é um paralelogramo

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 111 Ex. 6

Enunciado

[PQRS] é um paralelogramo.

  1. Quantos triângulos estão representados na figura?
     
  2. Calcula:   
  • $P\hat{Q}R$
     
  • $S\hat{T}R$
     
  • $P\hat{S}R$
     
  • $Q\hat{T}R$

Resolução >> Resolução

  1. Na figura estão representados 8 triângulos: [PQT], [QTR], [RTS], [STP], [PQR], [RPS], [RSQ] e [PQS].
     
  2. (Vai anotando na figura as amplitudes calculadas)
  • $P\hat{Q}R=180{}^\text{o}-(Q\hat{P}R+Q\hat{R}P)=180{}^\text{o}-(18{}^\text{o}+30{}^\text{o})=132{}^\text{o}$, pois a soma das amplitudes dos
Constrói um paralelogramo [MNPQ] 0

Constrói um paralelogramo [MNPQ]

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 111 Ex. 2

Enunciado

Constrói um paralelogramo [MNPQ], sabendo que $\overline{MN}=10\,cm$, $\overline{MQ}=5,4\,cm$ e $\hat{M}=60{}^\text{o}$.

A seguir, traça as suas diagonais e designa por O o seu ponto de intersecção.

Determina:

  1. a amplitude do ângulo interno P;
  2. a amplitude do ângulo interno Q;
  3. o perímetro do paralelogramo.

Resolução >> Resolução

Reproduz a …

Constrói um paralelogramo [MATE] 0

Constrói um paralelogramo [MATE]

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 110 Ex. 8

Enunciado

Constrói um paralelogramo [MATE], tal que $\overline{MA}=5\,cm$, $\overline{AT}=2,5\,cm$ e $\hat{A}=55{}^\text{o}$.

Resolução >> Resolução

Reproduz a construção:

var parameters = { "id": "ggbApplet", "width":834, "height":362, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 …

Constrói um paralelogramo [DOCE] 2

Constrói um paralelogramo [DOCE]

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 110 Ex. 7

Enunciado

Constrói um paralelogramo [DOCE], tal que $\overline{DO}=4\,cm$, $\overline{CO}=3\,cm$ e $\overline{DC}=6\,cm$.

Resolução >> Resolução

Reproduz a construção:

var parameters = { "id": "ggbApplet", "width":905, "height":449, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 , 18 65 , 7 …

Soma dos ângulos de um quadrilátero 0

Soma dos ângulos de um quadrilátero

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 110 Ex. 3

Enunciado

Prova que a soma das amplitudes dos ângulos internos de um quadrilátero é 360º.

Resolução >> Resolução

Consideremos o quadrilátero [ABCD]:

var parameters = { "id": "ggbApplet", "width":740, "height":398, "showMenuBar":false, "showAlgebraInput":false, "showToolBar":false, "customToolBar":"0 39 | 1 501 67 , 5 19 , 72 | 2 15 45 …

A medida da amplitude do ângulo externo 0

A medida da amplitude do ângulo externo

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 103 Ex. 6

Enunciado

A medida da amplitude do ângulo externo em B, no triângulo [ABC], é 100º.

Sabendo que $\hat{B}=\hat{C}$:

  1. determina a medida da amplitude de cada um dos ângulos internos do triângulo;
  2. indica qual o lado de maior comprimento do triângulo e o de menor comprimento. Justifica.

Resolução >>

0

Sabendo que…

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 103 Ex. 5

Enunciado

Sabendo que $\hat{B}=62{}^\text{o}$, $\overline{AB}=\overline{BC}$ e $\overline{CD}=\overline{CE}$ , calcula $C\hat{D}E$.

 

Resolução >> Resolução

Como sabemos, num triângulo, a lados geometricamente iguais, opõem-se ângulos geometricamente iguais.

Logo, no triângulo [ABC], são geometricamente iguais os ângulos BAC e BCA, pois opõem-se a lados geometricamente iguais.

Por outro lado, sabemos …

0

Observa a figura

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 103 Ex. 4

Enunciado

Observa a figura onde [MN] é paralelo a [BC].

Calcula:

  1. $M\hat{A}N$
  2. $A\hat{B}D$

Resolução >> Resolução

  1. O ângulo MNA é suplementar do ângulo assinalado com 142º de amplitude, pois são ângulos de lados paralelos, sendo um agudo e outro obtuso. Assim, $M\hat{N}A=180{}^\text{o}-142{}^\text{o}=38{}^\text{o}$.
     
    Como a soma das amplitudes dos
0

Calcula o valor de x em cada figura

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 103 Ex. 2

Enunciado

Calcula o valor de x em cada figura, considerando r//s.

Resolução >> Resolução

FIGURA a)

Os ângulos considerados são geometricamente iguais, pois são ambos agudos e de lados paralelos.
Logo, temos:

$\begin{array}{*{35}{l}}
   2x-95=25 & \Leftrightarrow  & 2x=120  \\
   {} & \Leftrightarrow  & x=60  \\
\end{array}$

Portanto, $x=60{}^\text{o}$.…

0

Um triângulo isósceles

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 102 Ex. 3

Enunciado

No triângulo isósceles [MAR], $\overline{RA}=\overline{MA}$ e $\hat{A}=50{}^\text{o}$.

Determina ${\hat{R}}$ e ${\hat{M}}$.

Resolução >> Resolução

Como a soma dos ângulos internos de um triângulo é um ângulo raso, vem: $\hat{M}+\hat{R}=180{}^\text{o}-\hat{A}=180{}^\text{o}-50{}^\text{o}=130{}^\text{o}$.

Num triângulo, a lados geometricamente iguais opõem-se ângulos geometricamente iguais. Ora, como $\overline{RA}=\overline{MA}$, então $\hat{M}=\hat{R}$.

Assim, $\hat{M}=\hat{R}=\frac{130{}^\text{o}}{2}=65{}^\text{o}$.

<<
0

Um triângulo rectângulo

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 102 Ex. 2

Enunciado

O triângulo [ABC] é rectângulo em A;
[AH] é perpendicular a [BC] e o ângulo externo em C mede 130º.

Calcula a medida da amplitude dos ângulos x, y e z.

Resolução >> Resolução

Como a amplitude de um ângulo externo de um triângulo é igual à …

0

Ângulos internos e externos de um triângulo

Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 102 Ex. 1

Enunciado

Utilizando os dados da figura, calcula:

  1. A medida de cada um dos ângulos internos do triângulo [MNP];
     
  2. A soma dos ângulos externos do triângulo.

Resolução >> Resolução

  1. Considerando que os ângulos seguintes são suplementares, temos:
    \[\begin{array}{*{35}{l}}
       {\hat{P}} & = & 180{}^\text{o}-N\hat{P}Q  \\
       {} & = & 180{}^\text{o}-145{}^\text{o}