Tagged: funções racionais

Resolva, em $\mathbb{R}$, as seguintes inequações 0

Resolva, em $\mathbb{R}$, as seguintes inequações

Funções racionais: Aleph 11 - Volume 2 Pág. 49 Ex. 6

Enunciado

Resolva, em $\mathbb{R}$, as seguintes inequações:

  1. \[\frac{{3x + 2}}{{x + 3}} >  – \frac{2}{3}\]
     
  2. \[\frac{{x + 1}}{{x – 1}} – \frac{{x – 1}}{{x + 1}} > 0\]
     
  3. \[\frac{{a – 2}}{a} < \frac{{a – 4}}{{a – 6}}\]

Resolução >> Resolução

  1.  
    \[\begin{array}{*{20}{l}}
      {\frac{{3x + 2}}{{\mathop {x + 3}\limits_{\left( 3
0

Mais assíntotas

Funções racionais: Aleph 11 - Volume 2 Pág. 33 Ex. 8

Enunciado

Escreva as equações das assíntotas dos gráficos das funções racionais seguintes:
\[\begin{array}{*{20}{l}}
  {f\left( x \right) = \frac{{ – 2}}{{x – 2}}}&{}&{g\left( x \right) = \frac{{x – 7}}{{x + 2}}}&{}&{h\left( x \right) = \frac{{3x – 3}}{{2x + 4}}}
\end{array}\]

Resolução >> Resolução

\[\begin{array}{*{20}{l}}
  {f\left( x \right) = \frac{{ …

0

Equações das assíntotas

Funções racionais: Aleph 11 - Volume 2 Pág. 33 Ex. 7

Enunciado

  1. Indique, por observação do gráfico, as equações das assíntotas de cada uma das seguintes funções:
     
     
  2. Faça corresponder a cada um dos gráficos das alíneas anteriores uma das seguintes funções:
    \[\begin{array}{*{20}{l}}
      {f\left( x \right) = \frac{{ – x}}{{x + 2}}}&{}&{g\left( x \right) = \frac{{3x – 5}}{{x – 2}}}&{}&{h\left(
0

A intensidade do som

Função potência: Infinito 11 A - Parte 2 Pág. 209 Ex. 98

Enunciado

A intensidade do som pode ser medida em Watt por metro quadrado, medida da pressão que o som exerce sobre o nosso ouvido. A intensidade do som emitido por uma aparelhagem sonora é função da distância a que o ouvinte se encontra das colunas de som. …

Uma parábola e uma hipérbole 0

Uma parábola e uma hipérbole

Funções racionais: Infinito 11 A - Parte 2 Pág. 187 Ex. 20

Enunciado

Considere, num referencial o.n. do plano, os pontos: $A(1,0)$, $B(-1,-1)$ e $C(-3,2)$.

  1. Determine os números reais a, b e c de modo que a parábola P, de equação $y=a{{x}^{2}}+bx+c$, passe pelos pontos A, B e C.
     
  2. Considere a hipérbole H de equação $y=\frac{1}{x}$.
     
    a) Verifique que H
Simplifique as fracções 0

Simplifique as fracções

Funções racionais: Infinito 11 A - Parte 2 Pág. 187 Ex. 19

Enunciado

Sempre que for possível, simplifique as fracções e indique o domínio da função.

Aprecie a correcção dos resultados recorrendo à calculadora gráfica.

  1. $f(x)=\frac{2{{x}^{3}}-8{{x}^{2}}+8x}{{{x}^{3}}-4x}$;
     
  2. $f(x)=\frac{3{{x}^{2}}+5x-8}{-{{x}^{2}}-x+2}$;
     
  3. $f(x)=\frac{4{{x}^{3}}-3{{x}^{2}}+4x-3}{4x-3}$;
     
  4. $f(x)=\frac{{{x}^{2}}+x-6}{{{x}^{3}}-2{{x}^{2}}-x+2}$;
     
  5. $f(x)=\frac{{{x}^{2}}+2x-8}{{{x}^{3}}-8}$.

Resolução >> Resolução

  1. ${{D}_{f}}=\left\{ x\in \mathbb{R}:{{x}^{3}}-4x\ne 0 \right\}=\left\{ x\in \mathbb{R}:x({{x}^{2}}-4)\ne 0 \right\}=\mathbb{R}\backslash \left\{ -2,0,2 \right\}$. 
     
    \[\frac{2{{x}^{3}}-8{{x}^{2}}+8x}{{{x}^{3}}-4x}=\frac{2x({{x}^{2}}-4x+4)}{x({{x}^{2}}-4)}=\frac{2x{{(x-2)}^{2}}}{x(x+2)(x-2)}=\frac{2(x-2)}{x+2}=\frac{2x-4}{x+2}\]
    Simplificação válida em $\mathbb{R}\backslash
0

Um aquário aberto em cima

Funções racionais: Infinito 11 A - Parte 2 Pág. 187 Ex. 18

Enunciado

Um aquário aberto em cima, de forma paralelepipédica, com 45 cm de altura, deve ter o volume de 170 litros.

Sejam x e y o comprimento e a largura da base, respectivamente.

  1. Exprima y como função de x.
     
  2. Exprima, em função de x, a área total do
Duas funções racionais 0

Duas funções racionais

Funções racionais: Infinito 11 A - Parte 2 Pág. 187 Ex. 17

Enunciado

Sejam

\[\begin{matrix}
   f:x\to \frac{2x+1}{{{x}^{2}}-1} & e & g:x\to \frac{2}{x-1}  \\
\end{matrix}\]

  1. Mostre que $f+g$ e $f-g$ são funções racionais e determine o seu domínio.
     
  2. Resolva gráfica e analiticamente as condições:a) $f(x)\ge 1$

    b) $g(x)\ge x$

    c) $f(x)<-\frac{1}{2}$

    d) $f(x)\ge g(x)$
     

  3. Determine gráfica e analiticamente as coordenadas dos
0

Para que um remédio produza o efeito desejado

Funções racionais: Infinito 11 A - Parte 2 Pág. 187 Ex. 16

Enunciado

Para que um remédio produza o efeito desejado, a sua concentração na corrente sanguínea deve estar acima de um certo valor, o nível terapêutico mínimo.

Suponhamos que a concentração c de um remédio, t horas após ser ingerido, é dada, em mg/l, por: \[c(t)=\frac{20t}{{{t}^{2}}+4}\]

Se o nível …

0

Nível de álcool no sangue

Funções racionais: Infinito 11 A - Parte 2 Pág. 185 Ex. 12

Enunciado

Pretende-se esboçar o gráfico de N, que dá o “Nivel de álcool no sangue”, em função do peso p de uma pessoa, depois de ela ter ingerido um litro de cerveja.

Sabe-se que:

  • num litro de cerveja existem 40 g de álcool;
  • N(p) é a razão entre
0

Uma nódoa circular de tinta

Funções racionais: Infinito 11 A - Parte 2 Pág. 185 Ex. 11

Enunciado

Uma nódoa circular de tinta é detectada sobre um tecido.

O comprimento, em centímetros, do raio dessa nódoa, t segundos após ter sido detectada, é dado por: \[r(t)=\frac{1+3t}{4+t}\,,\,t\ge 0\]

  1. Calcule o raio da nódoa no instante em que foi detectada.
     
  2. Recorrendo à sua calculadora, indique:
  • o instante
0

Uma unidade industrial

Funções racionais: Infinito 11 A - Parte 2 Pág. 182 Ex. 2

Enunciado

 Uma unidade industrial trata p% da água que lança ao rio.

O custo do tratamento, C(p), é dado em milhares de euros pela expressão \[C(p)=\frac{230p}{100-p}\]

  1. Calcule o custo do tratamento de 10% da água.
     
  2. Apresente uma tabela de valores do custo, de 10% em 10%, e o