Tagged: funções trigonométricas

0

As curvas ${C_1}$ e ${C_2}$ são as representações gráficas das funções $f$ e $g$

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 130 Ex. 14

Enunciado

As curvas ${C_1}$ e ${C_2}$ da figura são as representações gráficas das funções $f$ e $g$ definidas, em $\left[ {0,2\pi } \right]$, respetivamente, por:

$$\begin{array}{*{20}{c}}
  {f(x) = \operatorname{sen} x}&{}&{\text{e}}&{}&{g(x) = \operatorname{sen} 2x}
\end{array}$$

  1. Determine as coordenadas dos pontos de intersecção das duas curvas.
     
  2. Resolva graficamente as inequações:
0

$C$ é uma semicircunferência

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 129 Ex. 13

Enunciado

$C$ é uma semicircunferência de diâmetro [AB], de centro O e de raio $r$.

[OC] é o raio perpendicular a [AB], M é um ponto do arco AC. Designa-se por $\theta $ a medida em radianos do ângulo AOM $\left( {0 \leqslant \theta  \leqslant \frac{\pi }{2}} \right)$.…

0

Um corredor de um museu

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 128 Ex. 11

Enunciado

Na figura está representado um corredor de um museu.

Considere a reta que passa por O, sendo $0 < \alpha  < \frac{\pi }{2}$, e que encontra as paredes em A e B.

  1. Exprima $\overline {OA} $ em função de $\alpha $.
     
  2. Exprima $\overline {OB} $ em função
0

Considere as funções reais de variável real

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 128 Ex. 10

Enunciado

Considere as funções reais de variável real:

$\begin{array}{*{20}{c}}
  {f(x) = x + 2\operatorname{sen} x}&{}&{g(x) = x + \cos x}&{}&{h(x) = x + \operatorname{tg} x}
\end{array}$

Determine, para cada uma das funções dadas, as abcissas de todos os pontos do gráfico em que a reta tangente é horizontal.…

Caracterize a função derivada 0

Caracterize a função derivada

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 128 Ex. 9

Enunciado

Recorrendo às regras de derivação, caracterize a função derivada em cada um dos casos seguintes:

  1. $f(x) = {x^2}\operatorname{sen} x$
     
  2. $f(x) = 5x\cos \left( {3x} \right)$
     
  3. $f(x) = \frac{{1 – \cos x}}{{1 + \cos x}}$
     
  4. $f(x) = \frac{x}{{\operatorname{sen} x}}$
     
  5. $f(x) = \frac{{\operatorname{tg} x}}{{1 + {x^2}}}$
     
  6. $f(x) = \frac{{1
0

A secção de um túnel

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 128 Ex. 8

Enunciado

A secção de um túnel é um semicírculo com 1 hm de raio.

No interior do túnel há uma estrutura com a forma de um trapézio, como mostra a figura.

Qual é o valor de $\theta $ $\left( {0 < \theta  < \frac{\pi }{2}} \right)$ que torna …

0

Uma rolha flutua num lago

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 127 Ex. 7

Enunciado

Uma rolha flutua num lago, movendo-se para cima e para baixo.

A distância $d(t)$ do fundo do lago ao centro da rolha no instante $t \geqslant 0$ é dada por $$d(t) = \cos \left( {\pi t} \right) + 12$$ com $d(t)$ expresso em metros e $t$ em …

0

De um função $f$

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 127 Ex. 6

Enunciado

De um função $f$ de domínio $\left[ { – \pi ,\pi } \right]$, sabe-se que a sua derivada é:

$$f'(x) = 2x – 2\cos \left( {2x} \right)$$

  1. Calcule, analiticamente, o valor de $$\mathop {\lim }\limits_{x \to 0} \frac{{f(x + \pi ) – f(\pi )}}{x}$$
     
  2. Estude a função
0

Maré

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 127 Ex. 5

Enunciado

Maré é, como se sabe, o movimento periódico de subida e descida (aproximadamente duas vezes por dia) do nível das águas do mar.

A expressão abaixo representa a variação $M$ da maré na baixa de Boston, desde as 0 às 24 horas de um determinado dia:

$$M(t) …

Considere a função $f$ 0

Considere a função $f$

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 54 Ex. 26

Enunciado

Considere a função $$f:x \to 2x – \operatorname{sen} x$$

  1. Estude a paridade da função $f$ e exprima $f(x + 2\pi )$ em função de $f(x)$.
    Verifique que se pode estudar $f$ em $\left[ {0,\pi } \right]$ e obter toda a curva ${C_f}$, recorrendo a transformações adequadas.
     
  2. Estude
Dada a função $f$ 0

Dada a função $f$

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 53 Ex. 24

Enunciado

Dada a função $f$ tal que $$f(x) = \sqrt 3 \operatorname{sen} x + \cos x$$

  1. Encontre $a$ e $\alpha $ de modo que $$f(x) = a\operatorname{sen} \left( {x + \alpha } \right)$$
     
  2. Resolva a equação $f(x) = 1$.

Resolução >> Resolução

$$f(x) = \sqrt 3 \operatorname{sen} x …

Determine as expressões designatórias das funções derivadas 0

Determine as expressões designatórias das funções derivadas

Funções seno, co-seno e tangente: Infinito 12 A - Parte 3 Pág. 50 Ex. 23

Enunciado

  1. Determine as expressões designatórias das funções derivadas das funções:
     
    a) $f:x \to \operatorname{sen} (3x) + \cos x$
     
    b) $g:x \to {\cos ^2}(2x)$
     
    c) $h:\alpha  \to \frac{{1 – \cos (3\alpha )}}{\alpha }$
     
    d) $i:z \to \frac{{1 – \cos (2z)}}{{1 + \cos (2z)}}$
     
    e) $j:t \to \cos \left( {4